
Unix Tools for Bioinformatics (2015-06-02)

Alexander Jueterbock, Martin Jakt∗

PhD course: High throughput sequencing of non-model organisms

Contents

1 Remote connection 3

2 Basic orientation in the command line 4

2.1 Directory navigation . 5

2.1.1 Conventional directory layout . 5

2.1.2 Moving in and out of directories with cd 5

2.1.3 Tip . 7

2.1.4 What is saved in the current directory? 7

2.1.5 Have a look at the directory structure . 8

2.1.6 Tip . 8

2.1.7 Create, move and remove files and directories 9

2.1.8 Tip . 9

2.2 Data transfer between computers . 10

2.2.1 rsync . 10

2.2.2 sftp/lftp . 11

2.2.3 Tip . 12
∗University of Nordland, Norway

1

3 Running programs (and the PATH variable) 12

4 Retrieving basic information from common NGS files 13

4.1 Uncover the content of a file and search for patterns 13

4.2 Counting words, lines, and characters with ’wc’ and searching for patterns with
’grep’ . 15

4.3 INFO on regular expressions . 16

4.4 Combine the content of files with ’cat’ and ’>’ . 17

4.5 Counting filtered reads in SAM files with ’awk’ 17

5 Bonus section on PERL 18

5.0.1 Variables in Perl . 18

5.0.2 Assigning variables . 19

5.0.3 Data types . 20

5.0.4 Program flow: loops and conditionals . 21

5.0.5 Reading and writing data . 23

5.0.6 Regular Expressions . 24

5.0.7 Various operators . 26

5.0.8 A somewhat useful example . 27

6 Recommended books 29

7 Unix cheat sheet 29

7.1 FILE system . 29

7.2 Opening FILEs and extracting information . 30

7.3 Data transfer . 30

7.4 Executing scripts and programs . 30

7.5 Networking . 31

2

7.6 Help . 31

7.7 Tricks . 31

Next Generation Sequencing (NGS) data often require big memory. You simply can’t open and
work with them in a Word processor or Excel table - even the attempt to open a big fasta file in
a text editor can freeze your computer. At first, you might feel uncomfortable with the command
line but it is a very efficient and powerful tool. Moreover, many programs to analyze NGS data
are based on the command line and to run them, you need to know the basic syntax. This
tutorial gets you familiar with some of the most basic command line tools and shows you how
they allow you to transfer files and how to extract information from big files fast and easily. All
tools and programs are open source - so you will have free access to them also at your home
institution or on your private computer.

1 Remote connection

To connect remotely to one of our computers, you will get:

• A password (e.g. PWD213)

• A username (e.g. user)

• An IP address (e.g. 127.0.0.1)

On ’Mac’ and ’Linux’ computers, the ssh (Secure Shell) tool is generally installed by default.
To connect to a remote server, thus, just open the command line/terminal and type:

1 ssh user@host

Replace ’user’ and the IP address ’host’ with your own username and the IP address of one of
our remote computers.

• Computer 1: 158.39.60.180

• Computer 2: 158.39.31.63

If this is the first time you want to access the remote server, you will likely get the following
warning

1 The authenticity of host '127.0.0.1 (127.0.0.1)' can't be established.
2 ECDSA key fingerprint is 38:59:f7:22:e5:85:ec:c3:9c:90:7x:c3:e4:ae:88:18.
3 Are you sure you want to continue connecting (yes/no)?

Just type ’yes’ and hit enter. You will be asked to enter your password. You will not see the
password when you enter it, so just type it blindly and hit enter.

3

1 user@127.0.0.1's password:

When you connected successfully, you will see a welcome-text similar to:

1 Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-35-generic x86_64)

If you don’t only want to use the command line on the remote host, but also want to use the
Graphical User Interface to open figures, GUI-based programs or web browsers, you should add
the -X option to your command, like:

1 ssh -X user@host

If you use PUTTY on Windows you need to install Xming (http://www.straightrunning.com/
XmingNotes/) and follow the guidelines on http://www.geo.mtu.edu/geoschem/docs/putty_
install.html).

To open applications with a graphical user interface remotely on a MAC, you need to install
XQuartz.

2 Basic orientation in the command line

The command line appears as a window/terminal similar to Fig. 1:

Figure 1: Command line window

The first line starts with your user name, followed by an @ and then the name of the computer
you are working on. The line ends with a $ - after this sign you can enter your commands.

4

http://www.straightrunning.com/XmingNotes/
http://www.straightrunning.com/XmingNotes/
http://www.geo.mtu.edu/geoschem/docs/putty_install.html
http://www.geo.mtu.edu/geoschem/docs/putty_install.html
http://xquartz.macosforge.org/landing/

The Unix cheat sheet (see at the end of this file) provides an overview of the core commands
to navigate and operate in the Unix command line. Most commands allow you to adjust their
behaviour with a variety of so-called arguments or flags. Most of the commands, for example,
display help information if you use them with the --help flag.

For example, if you type ls --help, you’ll get an overview of the common usage of the command
ls and of the flags that can change the behaviour of this command. The --help option doesn’t
provide much help for the ssh command. In such cases you can try the man command. It opens
a manual page of the specified tool. For example, try man ssh. If you want to leave the manual
page, just hit q. Before we will work on some sequencing data, let’s have a look at the commands
that allow you to change directories and how to get an overview of files that were saved in these
directories.

2.1 Directory navigation

Navigating through your directories is a big hurdle if you are new to the command line and are
used to ’clicking’ you way in and out of folders. To understand how to move in and out of folders
(directories on Unix/Linux) and to look at the content of folders is an essential step to analyse
your data on the command line.

2.1.1 Conventional directory layout

On a UNIX system, everything is a file; if something is not a file, it is a process.

This is a simplification but it is mostly true. A directory on a Unix system is just a file that
contains names of other files. Also programs, images and documents are all files. These files are
hierarchically ordered in a conventional tree-like structure (see Fig. 2)

The root (represented as /) is the top-most level of this hierarchy. When you connect to a
Unix computer, you are automatically located in your user home directory (/home/username/)
and this is the only one you have write access rights to in this course. Many of the programs
and scripts that you will use in ths tutorial are located in the /usr/ directory, generally in
/usr/local/bin/.

Applications that are located in /usr/local/bin/ can be run by any user because this directory
is automatically specified in the so-called PATH variable of every user. The PATH vairable is simply
a variable that specifies the directories where executable programs are located. You will meet
this PATH variable when you learn more about running programs.

2.1.2 Moving in and out of directories with cd

cd stands for ’change directory’. with this command you can navigate in and out of your di-
rectories. To see what your present working directory is, simply type pwd (for ’present working
directory’) and hit enter

5

Figure 2: Conventional file tree structure on a UNIX system from linuxconfig.org

1 pwd

The response in my case is:

1 /home/alj/

When you want to ’move’ to a different directory, the TAB key comes in handy as it auto-
completes the possible sub-directories you can ’move’ to. For example, when you type cd and
hit the TAB key twice, you get an overview of all possible sub-directories. For example,

1 cd
2 .adobe/
3 Adobe/
4 .cabal/
5 .cache/
6 .compiz/
7 .config/
8 --More--

Hit ENTER to see more sub-directories in your shell or ’n’ to leave the list of sub-directories.

If you know that your target sub-directory starts with the letters ’Do’, you can type these after
the cd command and then hit TAB twice (once is enough if there is only one sub-directory that
starts with the letters ’Do’):

1 cd Do
2 Documents/ Downloads/

6

http://linuxconfig.org/filesystem-basics

I, for example, have two directories starting with ’Do’, Documents and Downloads. So, TAB
completion helps when moving into sub-directories, but how to get out of them again? With

1 cd ..

you move one level up in your hierarchical directory structure. If you want to go to your home
directory from wherever you are, use

1 cd ~

or just

1 cd

2.1.3 Tip

If there are empty spaces in your filepath, you need to precede them with a backslash (\) in order
to navigate to them, like in

1 /home/my\ directory/

or use quotation marks

1 cd "/home/my directory"

2.1.4 What is saved in the current directory?

Once you navigated with cd to your target directory and you want to look at the files and sub-
directories that are located in it, you can use the command ls and hit enter. The tool ls comes
with many options that refine the way that the results are shown; you get an overview of these
options with:

1 ls --help

The combination of options that I use most frequently are

1 ls -lhcrta

The option

7

• -l provides additional information to the file or folder name

– file permissions
– user and group owners of the file
– size
– date of modification

• -h prints the file sizes in human readable format, like 100K instead of 102400

• -c sort by last modification of file status information

• -r reverse order while sorting (so that the newest files are the last that are printed)

• -t sort by modification time, newest first

• -a prints also the hidden files (starting with a dot ’.’).

2.1.5 Have a look at the directory structure

The command line tool tree prints the hierarchical structure of your files and directories (re-
cursing into all sub-directories) to the screen.

To discriminate files from folders via colors, use the -C option

1 tree -C

To show only directories, use the -d option

1 tree -d

Try also the following command:

1 tree -sh

Here,

• -s provides the file and directory sizes

• -h prints the sizes in a human readable format

2.1.6 Tip

Besides the TAB-key, that allows for auto-completion of commands or filenames, the UP- and
DOWN-arrow keys on your keyboard can safe you some time. These buttons allow you to
navigate through the history of command that you have entered in the command line. Try it
out.

8

2.1.7 Create, move and remove files and directories

New directories can be created with

1 mkdir directoryname

Here, directory is the name of the directory you want to create.

To create a new empty file, use the command touch:

1 touch filename

You can move or rename files with the command mv. For example:

1 mv file1 file2
2 mv file1 ../file1

The first command renames file1 to file2. The second command moves file1 one folder up.

If you don’t want to move but copy a file, use the command cp.

1 cp file1 file2

Instead of renaming file1 to file2, as the mv command does, the cp command keeps file1 and
creates a new file2 with the same content.

The most dangerous command that you learn to day is rm, which stands for remove. If you
remove a file with this command, it is gone and you can not retrieve it. But if this is what you
want, you can remove, for example, file2 that we created above with the following command:

1 rm file2

To remove an entire directory, use rm with the -r flag, like:

1 rm -r directoryname

2.1.8 Tip

To get an overview of all the commands that you have used before, just type

1 history

and hit ENTER.

9

2.2 Data transfer between computers

Before you can work on a remote server with your own data, you first need to know how to
transfer them. One of the best platform-independent GUI programs that allows you to up- and
download files is FileZilla (Download and Documentation: https://filezilla-project.org/).
In the following lines I want to introduce the command line tools rsync and sftp/lftp, that
allow you to transfer and synchronize files.

2.2.1 rsync

rsync stands for "remote sync". This powerful tool has plenty of options. Here is the most basic
syntax to transfer files from a source (SRC) location to a destination (DEST) with rsync. (Text
in square brackets denotes optional arguments, in this case optional options!)

1 rsync [OPTIONS] SRC DEST

SRC and DEST can either be files or folders. For example, to transfer the file ’file.txt’ from your
local home folder to a remote server, you can type:

1 rsync --progress /home/user/directory/file.txt user@host://home/user/

Here, you need to change /home/user/directory/ to your own filepath and file.txt to your
own filename. In ’user@host’, user represents your username on the remote server and host
the IP address of the remote server. The --progress option will indicate the progress of the file
transfer - which is useful when transferring big files.

If you want to transfer files from the remote server to your local computer, just swap the source
and destination path specifications:

1 rsync --progress user@host://home/user/file.txt /home/user/directory/

If you want to transfer all files that are located in your local folder /home/user/directory/, you
can use the following command

1 rsync -avz --progress /home/user/directory/ user@host://home/user/

Here,

• -av will transfer the files in ’archive mode’ (which combines several options, including
recursing into directories)

• -z will compress the files durig the transfer

Note the trailing slash after the source directory: /home/user/directory/. If you do not use

10

https://filezilla-project.org/

this trailing slash, like /home/user/directory, then rsync will create a folder with the name
directory at the destination and copy all files from the source folder into it.

Ok, that’s all we need to know to get the sequencing data from last week to the remote computer.
As we need the data in the following tutorials, it is best if you upload them now.

2.2.2 sftp/lftp

rsync is a wonderful tool, but its power makes it complex and it can be difficult to remember
how to do even simple things (try man rsync if you don’t believe me!). When using rsync you
also need to know and remember where the files and directories that you wish to synchronise
are located. My preference is for using the programs similar to the old ftp command line client
(which even Windows has). This provides an environment very similar to the normal Unix shell,
where you change directory using cd, list the files using ls, find out where you are using pwd
and so on. However, the ftp protocol is inherently insecure; it may not matter that the data is
transmitted without encryption, but you should be concerned about sending your password in
plain text across the ethernet. Not good. Hence, these days we use the sftp (secure file transfer
protocol) instead. On Mac and Unix systems you will essentially always have the sftp command
line client installed. On Windows, well, you can use Putty or other third party tools. On Linux
systems you may also have the lftp command line client installed. Its usage is almost identical
to the usual sftp and ftp clients but it comes with extended functionality that allows you for
example to mirror (i.e. synchronise directories) between the remote and local computers.

To use the sftp program, simply type:

1 sftp hostname

into your terminal. The hostname may need to be specified as the IP address (a load of numbers)
or can be a simple name depending on your setup. After the connection is made you will be
asked for your password. The sftp program assumes that you will be using the same username
as you are using on the local computer. If this is not the case you can specify your username by:

1 sftp username@hostname

After having successfully logged in to the remote computer you can move around the directories
as if you were logged in over a shell session (i.e. using ls, cd and so on). If you wish to change
the directory on the local machine, simply use the lcd command. You can also run commands
in your local shell by prefixing these with an !, eg. !ls or !pwd. You can create directories on
the remote computer with mkdir, and on the local machine with !mkdir. To transfer files from
the remote to the local computer use get fname. You can use globbing (*) to expand the file
set, eg. get *.fa for all files ending in ’.fa’. (For this you may need to use mget *.fa on some
implementations, this used to be true on the old ftp command line client). Similarly you can
upload files using put.

As mentioned lftp is almost identical in its operation. However, when starting the program you
need to specify that you wish to use the sftp protocol as it defaults to the standard ftp protocol
(with an anonymous user). Hence use something like:

11

1 lftp sftp://username@hostname

lftp also allows you to mirror whole directory structures using the mirror command which can
save you a lot of time. Finally, when I started using lftp, the standard ftp and sftp clients did
not provide tab completion, and this was a big advantage of lftp at that time. These days most
if not all of the clients provide this functionality, so it is not quite as big a deal as it was in the
long past.

2.2.3 Tip

If you want to transfer in one go, all files that have some common characteristic in their name you
can use the asterisk *, which stands for ’any character’. The * is one of the most commonly used
wildcard symbols that stands for a continuous string of characters. To specify a set of filenames
with wildcard characters is also referred to as globbing.

For example, if you want to transfer all fasta files at once, you can use

1 rsync -avz --progress /home/user/directory/*fasta user@host://home/user/

This means that any characters can precede the fasta file ending

If you want to transfer all files that belong to a certain population and are, for example, marked
with ’Pop1’ in the file name, you can use:

1 rsync -avz --progress /home/user/directory/*Pop1* user@host://home/user/

This means that any characters can precede or follow the Pop1 character in the file name.

3 Running programs (and the PATH variable)

When using the shell you normally run a program by simply typing the program name and any
required arguments. But how does the shell know what program to run and where to find it?
On a typical Unix / Linux system executable files (i.e. programs) can be found in a range of
standard locations (eg. /bin/, /sbin/, /usr/bin/, ~/bin/) as well as anywhere a user puts
them. Normally when you run a program by simply typing its name, the shell will look for an
executable file of that name in a list of directories specified by the $PATH environment variable.
The first matching program is then run.

The user can also directly specify the location (path) of the executable; this is necessary if the
program you wish to run is not present in any directory specified by the $PATH variable, or if
multiple programs of the same name are present and you want to run one of the later matches:

1 /usr/local/bin/pg_ctl start

to start a version of the Postgresql database installed in /usr/local/bin specifically.

12

You can also specify a path that is relative to your current location. If for example your current
working directory is ~/Documents/testPrograms/ and you wish to run a locally installed version
of gcc (gnu C compiler) found in ~/bin/:

1 ../../bin/gcc -o test main.c

(Remembering that ../ takes you up one level in the directory structure). To do the same you
could also make sure that the $PATH contains ~/bin before other potential locations of gcc.

To check the current value of your $PATH, simply use the echo command:

1 echo $PATH

To learn how to extend your own PATH variable have a look in the hidden .basrc or .bashprofile
file in your home directory. It usually gives a few examples. Failing that have a look at Google.

Finally if you’ve written a small script or installed a program in your current working directory
you can run that by typing ./scriptname. There is nothing special about that, it is merely how
you represent the relative path to your current working directory.

4 Retrieving basic information from common NGS files

Now that we know how the commandline works, how we can change directories and transfer files,
it’s time to look at NGS data output and to learn how to open and summarize information from
such files - like, for example, the number of sequences in a fasta file.

The folder PracticeFiles contains the following files:

• HTS.fasta and HTS2.fasta, fasta files with sequence identifiers and sequences

• HTS.fastq, a file with sequences and associated base qualities

• HTS.sam, an alignment file

4.1 Uncover the content of a file and search for patterns

The tool less can be used to display the content of text files one line or page after the other.
Since it doesn’t read the entire content of a file at once, it is very useful for looking into large
files.

Let’s have a look at a fastq file with the command:

1 less Fastqfile.fastq

13

Once you have opened a fasta file, for example, with less . . .

1 less Fastqfile.fasta

. . . you can search for patterns, like the nucleotide sequence ’GCTC’, with /, like

1 /GCTC

hitting n repeats this search on the remainder of the file.

To show only those lines in the file that match the nucleotide sequence ’GCTC’, type this sequence
after the & sign:

1 &GCTC

To go to the last line of the file, just type G, to go to the first line, type g. To close the file again,
hit q.

The less command has more options than this. You get an overview of these with the --help
flag:

1 less --help

The head command, followed by the name of a text file, prints by default the first 10 lines/rows
of the file to the terminal. The -n option allows to determine the number of rows that shall be
printed. For example, to extract the first sequence-id along with the nucleotide sequence from
HTS.fasta, you can select the first two lines with:

1 head -n 2 HTS.fasta

When the line number K is preceded with -, then all but the last K lines are printed. For example,
the command to print all but the last ten lines from a HTS.fasta is:

1 head -n -10 HTS.fasta

The tail command, in contrast, prints by default the last 10 lines of a file to the terminal. Also
here you can select the number of lines with the -n option. When the line number K is preceded
by a +, then all but the first K lines are printed. For example, to exclude the first two lines from
HTS.fasta

1 tail -n +2 HTS.fasta

To extract specific lines from a file, the tool sed can help you. To print all lines between line 234

14

and 236 from HTS.fasta, for example, use:

1 sed -n '234,236p'

4.2 Counting words, lines, and characters with ’wc’ and searching for pat-
terns with ’grep’

If you want to get a rapid overview of the number of lines in a file, the wc command is the right
tool. In output-files where every line represents a sequence, for example, wc -l is all you need
to count the number of sequences.

1 wc -l File.txt

The -l option specifies that you want to count the number of lines. The -m and -w options
further allow you to count the number of characters or words.

To count the number of sequences in a fasta file, you have to limit the lines that are counted to
those starting with a ">" sign because ">" precedes every sequence identifier:

1 >SEQ1_ID
2 GGATTCATAGAAACCATAGATACATAGATACATAGATTAGGGACAGATAATAG
3 >SEQ2_ID
4 GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
5 >SEQ3_ID
6 AGATACAGAGAGACAAGACATAGACAGATAACAGAATAGAGATAGAGGAGAGG

grep allows you to extract lines that contain specific characters, like ">".

If you type

1 grep ">" HTS.fasta

All lines in HTS.fasta that contain the ">" character are printed to the screen. You can stop the
flow of output by pressing Ctrl+C. If you don’t want to write these lines to the screen but want
to count them, the | symbol provides a ’pipe’ to pass the output from the grep command to
the wc command. So, to count the number of sequences in HTS.fasta, you can use the following
command:

1 grep ">" HTS.fasta | wc -l

Here a recap on what the commands mean: grep is used to search for > signs in the fasta file.
All sequence-id’s start with this character. Instead of printing all these lines to the terminal, we
re-direct it to the wc command with the pipe symbol |. Using the -l option, wc counts all the
lines. Here, wc doesn’t need an input file.

Your turn. What command would you use to count the number of sequences in a fastq file?

15

If you are in doubt what quality encoding your fastq file has, grep can help you. Have a look at
Fig. 3. If you find one of the ASCII characters 33 (character’ !’) to 58 (character ’:’), you can be
sure that the quality encoding is Phred+33.

Figure 3: Quality score encodings

So, try if you find one of the Phred+33-specific quality characters in HTS.fastq. For example:

1 grep "!" HTS.fastq | wc -l

grep also allows you to search for the sequence of a specific gene-id and identify the line of the
hit in a fasta file, if you use it with the -n flag. For example, if you want to know which line in
the HTS.fasta file holds the sequence with the gene-id ’gi|612475216|gb|AZHG01011862.1|’, you
can use:

1 grep -n "gi|612475216|gb|AZHG01011862.1|" HTS.fasta

It is line 23724.

4.3 INFO on regular expressions

grep stands for global regular expression printer and is a command-line utility for searching
plain-text data for lines matching a regular expression. With regular expressions you can match
strings that are not identical but follow a specified pattern. We won’t go into further detail here,
but you can read more about regular expressions in A Tao of Regular Expressions and you can
find a short introduction in the Perl section below. Also, here you will find a cheat sheet with
essential regular expressions.

16

http://www.scootersoftware.com/RegEx.html
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

4.4 Combine the content of files with ’cat’ and ’>’

The most common use of the cat command is to redirect the contents of text files to other files
or commands.

The following command, for example prints the content of HTS.fasta to the screen

1 cat HTS.fasta

With the > and » operators, you can print the content of files not to the screen but to other files.
This allows to rapidly combine two files, even huge ones. For example, in the following command
HTS.fasta and HTS2.fasta are combined to COMBINED.fasta.

1 cat HTS.fasta > COMBINED.fasta
2 cat HTS2.fasta >> COMBINED.fasta

The > operator redirects the output of the cat HTS.fasta command (the content of HTS.fasta)
to COMBINED.fasta. The » operator adds the output of the cat HTS2.fasta command to the
COMBINED.fasta. If we would use the > operator instead of the » operator in the second line, the
content of COMBINED.fasta file would be overwritten, not appended. So, the > operator (over)
writes content to a specified file while the » operator appends content to a specified file. If you
use the » operator, the specified file needs to exist already.

4.5 Counting filtered reads in SAM files with ’awk’

Later in the course we will encounter specific programs that can filter SAM and VCF files. Here,
I want to show you that we can also use basic command line tools to filter such files. The
command line tool awk can extract single columns or apply a filter on column values in any file
that is organized in columns - as SAM and VCF files are. The -F option allows you to specify if
your columns are delimited by commas, spaces, tabs or any other character.

We learned this morning that SAM files (alignment files) are tab-delimited (\t and always contain
the mapping quality in the fifth column ($5). Thus, to count mappings in a SAM file that have
qualities > 20, we first strip off the header lines containing the @ character with grep:

1 grep -v "^@" HTS.sam

Here, the -v option inverts our search (all lines including @ at the beginning of the line - specified
by the ^ sign - are excluded).

The above command would print all non-header lines to the screen. Instead, we want to pipe
the output of this command to awk, in order to extract only those reads with a mapping quality
>20 and then pipe this output to wc to count the lines:

1 grep -v "^@" HTS.sam | awk -F "\t" '$5 > 20 {print $0}' | wc -l

17

Here, $0 refers to the entire row, while $5 refers to column 5 of that row. -F just specifies the
field separator, and \t sets it to the TAB character. Since we pipe (using |) the output of grep
to awk, and then the ouput of awk to wc the lines are not printed to screen but directly counted
with the wc command. Only the output of wc gets printed to the screen.

5 Bonus section on PERL

Perl is a useful programming language whose principles can be learnt within a short period of
time allowing researchers not familiar with programming to quickly become able to automate a
variety of processes. Although not an official acronym, Perl is often referred to as standing for,
’Practical Extraction and Reporting Language’; and this is pretty much what Perl makes easy.

Perl has been used extensively within the field of Bioinformatics (see Bioperl, http://www.
bioperl.org) though recently it has been overshadowed to some extent by the use of R for
statistical analyses of data. However, Perl remains widely used and several of the tools you will
use in this course have been written in Perl. R is incredibly useful when you have regular data
structures that can be expressed as arrays or matrices; however it is unsuitable for describing
irregular types of data (eg. structures of genes, etc.) where it may be necessary to iterate through
the elements of a data set. Compared to R, Perl is a much more general programming language
that can be applied to a much wider set of problems.

The motto of Perl is, ’There is more than one way to do it’. And in Perl this is very true; the
same logic can be expressed in a number of different ways and masters of Perl will sometimes
delight in their ability to fit a very large amount of functionality into a small amount of code.
This is kind of neat, but can lead to code that is difficult to understand and should not be
encouraged for code that will actually be used. The flexibility of Perl also means that it can be
difficult to read other people’s code as they may use a very different style of coding to ones own.
Perl can also be quite a dangerous language and it is often said that it gives the user more than
enough rope to hang themselves with.

5.0.1 Variables in Perl

In order to handle information within a program we assign values to variables and then manipu-
late these according to the flow of the program. Perl provides three different types of variables:

• Scalar variables: these take a single value (usually a number or some text) and are denoted
by a $ prefix, eg. $var.

• Arrays: these contain an ordered series of values that are accessed by their position. Arrays
are denoted by an @ prefix, eg. @array. Individual values are accessed as scalars, using
square brackets to indicate the position, eg. $array[3] accesses the fourth element of
@array (the fourth rather than the third as we count from 0).

• Hashes (or associative arrays): these hold key-value pairs and are denoted by the % prefix,
eg. %hash. Individual elements are again accessed as scalars, but this time using curly
brackets, eg. $hash{key}. The key value can be anything that can be assigned to a scalar
(numbers, text, and references).

18

http://www.bioperl.org
http://www.bioperl.org

5.0.2 Assigning variables

The values of variables can be assigned directly in the program’s source code, but are more
frequently assigned through the command line arguments (see below) or by the program reading
input (data or configuration) files (see lower section). Scalars are the simplest:

1 $var1='hello';
2 $var2="world";
3 $var3=3.14;

Strings (i.e. text elements) can be assigned using either single ’ or double " quotes. The use of
double quotes expands variables within the quoted text such that:

1 $var4="goodbye $var1";

will assign the text "goodbye world" to the variable $var4. In contrast:

1 $var4='goodbye $var1';

will assign the text ’goodbye $var1’ to $var4 (without the quotation marks!). Double quotes also
allow escape codes such as \n \t to be interpreted as newline and tab characters respectively.

Arrays can be assigned in a number of ways, occassionally directly in the code:

1 @ar1 = (1, 2, "three");

An empty array can also be created and then extended by adding elements. This can be done
by either using the push function or by using subscripts beyond the range of the array:

1 ## text following a # character are treated as comments
2

3 @ar1 = (); ## creates an empty array of length 0
4 push @ar1, "hello"; ##extends this array to have a length of 1
5

6 $ar1[2] = "three";
7 ## the array now has a length of three, but an undefined value in the second position
8 ## $ar1[1]

In most cases, elements of an array will be assigned to values found in input files containing the
data to be analysed, rather than being defined directly in the code as above.

Hashes (associative arrays) that store key value pairs are defined in a similar way to arrays.
Again the actual values are usually obtained from input files, but can also be defined in the code.

19

1 %kv1 = ();
2 ## this creates an empty hash structure. It is actually not necessary to
3 ## declare it, but one can directly assign elements of the hash:
4 $kv1{1} = "one";
5 $kv1{2} = "two";
6 $kv1{'three'} = 3;
7

8 ## this hash could also have been created in a single line :
9 %kv1 = (1 => "one", 2 => "two", 'three' => 3);

10

11 ## to access the elements of an associative array we obtain
12 ## the keys of the hash using the keys command.
13

14 @keys = keys %kv1;
15 ## print the first value associated with the first key:
16 print "$keys[0] $kv1{$keys[0]}\n";
17

18 ## the \n simply defines a newline character

Scalars, arrays and associative arrays can be combined to create arbitrarily complex data struc-
tures. Hence you can have hashes of arrays and arrays of hashes and so on. To fully use more
complicated data structures requires an understanding of the reference. A reference is a value
that points to another piece of data by providing the memory address of that data. For example,
an array of hashes is encoded as an array of references to hashes. To obtain the value of data
referred to by a reference it the reference must be dereferenced. Perl has a number of different
ways in which this can be done, but these will not be explained in depth here as it can get a bit
messy.

Semicolons: you may have noticed that in the above examples almost every line ends with a
semicolon. In Perl (and in many other languages), the semicolon is used to denote the end of
statements. This means that single statements can be spread across several lines and that a
single line can contain a number of statements. This can greatly aid the readability of the code.

5.0.3 Data types

In the above examples we assigned values to variables without caring about what kind of data
we used. For example consider the following:

1 $var1 = "one";
2 $var2 = 2;
3 $var3 = $var1 + $var2; ## !!??!!

Here we have assigned the value of $var1 to a piece of text (which we will refer to as a string
from here on) whereas $var2 has been assigned a numeric value. Perl is a dynamically typed
language; that means that you do not have to explicitly define what type of value a variable
contains. This is convenient when writing a script (essentially a small program), but this does
make it easier to make mistakes in more complicated situations. In the above example, the third
line doesn’t make sense, and will generate an error. In this case it is obvious from the code, but
in most real world situations the values will be read in from an external file produced by some
other program or person in which case finding the reason for the problem may not be so simple.

Perl essentially has three data types, strings, numeric values and references. References are
necessary for making more complex data structures and to allow variable values to be modified
by functions. As mentioned above though, references will not be covered in much depth as they

20

are more suitable for a more advanced course. The string and numerical data types are fairly
straightforward, though there are a few potential problems (common to essentially all computer
programming):

• Numeric values do not have infinite precision. For example (1/3) is not equal to (0.1/0.3).

• Numeric values can not be arbitrarily large. On my machine the maximum value Perl can
handle is somewhere between 1e308 and 1e309. That’s a pretty large number which you
might not think that you will ever need. However, it is smaller than the factorial of 171,
and this is something you may run across in statistical equations.

• Mathematical operations can result in illegal numbers, eg. 1/0. If your program carries
out any calcuations you need to be aware of this and how Perl handles the resulting values.

• Text is actually not that simple. From the beginning, the end of lines has been encoded
differently in Windows (i.e. DOS), MacOS and Unix. In Unix an end of line is encoded
with a newline character, on Windows, a newline character followed by a carriage return,
and on MacOS it might be just a carriage return (to be honest I forget). This can cause
trouble as text files are usually written and read line by line (i.e. new lines indicate a new
section of data). The simplest way of avoid any trouble is simply never to use Macs or
Windows machines, but that can be difficult at times.

• These days text encoding is rather complicated, as it has been expanded to cater to a range
of languages and character sets (eg. Arabic, Chinese, Japanese, Thai, etc..). This is not
straightforward and several conflicting encodings have been developed. For bioinformatics
you usually do not have to care; but you have to be aware of potential problems when
handling text that contains unstructured descriptive data. Such text may contain names, or
places written in glyphs that require Unicode encoding. Such descriptions may even contain
characters that look like normal roman letters, but which have been encoded differently.
Google, ’halfwidth fullwidth characters’ to confuse yourself.

• Sorting. Numbers and strings are obviously sorted differently. Consider that (12 > 8),
but (’12’ < ’8’). In the latter case we are comparing strings through a lexicographic
comparison where the first character is the most significant for the sort. Since 8 is larger
than 1, "8" is also larger than "12". In Perl sorting is lexicographic by default, and a
numeric sort has to be explicitly specified. This is sometimes problematic when a mix of
numerical and character based identifiers are used and the reason that you often see the
following chromosome ordering: 1,10,11,12,. . . ,19,20,21,3,4,5,. . . ,9,X,Y.

5.0.4 Program flow: loops and conditionals

We use computer programs to automate repeated processes; that is to carry out the same or
similar operations on a large number of data points. This is (usually) done by iterating over a
collection of data until some condition is met. That condition is often simply that we have no
more pieces of data to look at, but the condition can also be that a solution to some problem
has been found, or anything that you can think of. This process is referred to as looping.

Similarly programs need to be able to handle the data differently depending on what it is. This
is handled by conditional statements. Conditional statements are also used in lots of other cases

21

including to control loops. Consider the following statement that checks for the equality of two
variables.

1 ## $a and $b are two variables whose values are specified somewhere else in the program.
2 if($a == $b){
3 ## then do something. For example increase the value of $b
4 $b = $b + 1;
5 }

There are a few things to mention here. The first is the use of the == operator. This tests for
numerical equality. It is very important not to confuse this with the = operator which assigns
values. Comparison operators can be thought of as returning a TRUE or a FALSE value. If a
TRUE value is obtained then the conditional statement is carried out, and if FALSE not. Perl
doesn’t actually have explicit TRUE and FALSE values, but any non-0 value is considered as
TRUE and a value of 0 is considered as FALSE. To confuse things the use of the assignment
operator returns the value that was assigned and this can cause some rather specific problems.
Consider:

1 $a = ($b = 10);
2 ## $a is now assigned to the value of 10
3

4 ## this conditional statement will always evaluate to TRUE
5 if($a = 25){
6 ## this will always be executed
7 }
8

9 ## but this will never evaluate to TRUE
10 if($a = 0){
11 ## this part of the program will never be reached
12 }

The second thing to mention is the use of the curly brackets ({and}). In Perl (and quite a few
other programming languages) these are used to break the code up into blocks of code that can
be conditionally executed (or looped over, which is kind of conditional). In Perl, blocks of code
can have their own scope by using the my keyword. This means that a variable which is defined
within a block of code is not visible outside of that block of code. This is very useful for more
complicated programs where it is easy to accidentally use the same variable names to represent
different properties. Consider the following snippet:

1 ## We start in the global scope. Variables defined here will be visible and modifiable
2 ## anywhere within the main body of the code (though not in external functions).
3

4 $a = 10;
5 {
6 $a = 20;
7 }
8

9 print "a is $a \n";
10 ## will print 20. However if we do:
11

12 {
13 my $a = 30;
14 ## $a will be equal to 30 only within this block of code
15 }
16

17 print "a is now $a \n";
18 ## does not print 30, as we $a was declared using the
19 ## my keyword.

It is good practice to use my and the related our keyword throughout the code as it will make it

22

easier to catch a range of different types of errors. This can be enforced by use strict;. Google
for more!

Looping can be used if, for example you have an array of values that you wish to obtain the
mean value of. To do this we wish to find the sum of the values and divide by the length of the
array. As always in Perl there are a number of ways in which this can be done:

1 ## @ar is an array of values specified somewhere else in the program.
2 ## ++ is an increment operator that increases the value of its operand
3 ## by one each time it is called.
4 ## += is an increment operator that increases the value of its left operand
5 ## by the value of its right operand.
6

7 ## to loop through the values we can use a classic for loop:
8 $sum = 0;
9 for($i=0; $i < @ar; $i++){

10 $sum += $ar[$i];
11 }
12

13 $mean = $sum @ar;
14 ## when an array variable is used in an expression it can can evaluate to either the array itself
15 ## or to a scalar value equal to its length. When it's not clear as to whether the scalar or array
16 ## value is indicated, the scalar value can be enforced by the scalar function.
17

18 ## We can also use a range specified loop and make use of the fact that in Perl
19 ## $#ar will evaluate to the higest index of an array (i.e. the length minus one)
20

21 for $i(0..$#ar){
22 $sum += $ar[$i];
23 }
24

25 ## we can also use a similar expression;
26 for $v(@ar){
27 $sum += $v;
28 }
29

30 ## alternatively we can use a while loop by specifying the index variable outside
31 ## of the loop statement;
32 $i = 0;
33 while($i < @ar){
34 $sum += $ar[$i];
35 $i++;
36 }

These are not the only ways in which you can loop through values or data structures, but they
probably represent the most common usages.

5.0.5 Reading and writing data

To read or write from a file we use a filehandle. This is just an identifier associated with the file
and the reading or writing process. To write to a file we usually use the print function. Using
print without specifying a filehandle will lead to the text being printed to STDOUT. In most
cases this means your terminal screen, but STDOUT can also be piped to other processes as
demonstrated previously in this guide. To open a text file and read a line at a time:

23

1 ## we wish to read from a file specified by the varialbe $fname
2

3 open(IN, $fname) || die "unable to open $fname $!\n";
4 ## here IN becomes specified as the filehandle (This is one of the few cases
5 ## where we use an undecorated string literal as an identifier).
6 ## The second half of the statement uses the '||' operator which simply means 'or'.
7 ## If we are unable to open the file then the program will print out the warning statement
8 ## following die and exit. $! is a magic variable that contains the error string.
9

10 ## to read all of the lines we can make use of a while loop
11 while(<IN>){
12 ## this will assign the text of each line to another magical variable, $_
13 ## we can print this out to STDOUT by calling
14 print; ## without arguments this prints $_ to STDOUT
15

16 ## normally we would do something useful first by processing the data in the line.
17 ## but more of that later.
18 }

To write to a file we also use open, but modify the filename to indicate that we wish to write to
a new file by prefixing the name with a ’>’ character. If a file of the same name exists it will be
overwritten. If we wish to append to an existing file we can use ’»’.

1 ## given that we wish to write something to a file specified by the
2 ## $fname variable.
3 open(OUT, ">$fname") || die "unable to open $fname $!\n";
4 ## write out the multiplication table (1..10) to the file
5 ## first write out some column headers
6 for $i(1..10)\{
7 print OUT "\t$i";
8 }
9 print OUT "\n";

10

11 for $i(1..10){
12 print OUT $i;
13 for $j(1..10){
14 print OUT "\t", $i * $j;
15 }
16 print OUT "\n";
17 }
18

19 close OUT;

5.0.6 Regular Expressions

You have already come across regular expressions in this course; they are used by a number of
Unix utilities like grep. The Perl implementation of regular expressions is perhaps one of the
best and most powerful ones available and a large part of the power of Perl comes through its
ability to make use of regular expressions.

As mentioned previously regular expressions are used to identify matches to generalised text
patterns in strings. There are a very large number of tutorials on how to use regular expressions
in Perl available on the net and we will only provide a very short introduction here.

In Perl, regular expression matching makes use of the =~ operator, where the left operand contains
the text to searched for matches to the pattern given by the right operand. Some examples:

24

1 ## The left operand is usually a variable, but for clarity we'll use
2 ## plain strings.
3

4 ## The regular expression is usually written as follows:
5 ## "some string to be tested" = m/ a regular expression /
6 ##
7 ## the character immediately following the m delimits the regular expression. If you wish to
8 ## include this character within the regular expression it will need to be escaped by placing
9 ## a \ in front of it. For regular pattern matching you do not need to specify the

10 ## m if you are using the forward slash as the delimiter. This is the most common way to write it.
11 ## So to check if an expression looks like the name of a Hox gene we can do:
12

13 "HoxA3" =~ /hox[a-z][0-9]+/;
14

15 ## Normal characters are matched directly, characters within square brackets [] represent a character
16 ## class (any character specified will allow a match). In the above example, the regular expression
17 ## will fail to recognise the left operand since the regular expression is case sensitive. To overcome
18 ## this we can do:
19

20 "HoxA3" =~ /hox[a-z][0-9]+/i;
21

22 ## we could also specify a character class at each position, but this would be ugly:
23 "HoxA3" =~ /[hH][oO][xX][A-z][0-9]+/;
24

25 ## which reads as: h OR H followed by o OR O followed by x OR X followed by a single character between A and z
26 ## followed by at least one number. But that is pretty ugly.
27

28 ## if you wish to use a different delimiter, like the # character you can write it like:
29 "HoxA3" =~ m#hox[a-z][0-9]+#i
30

31 ## this can be useful when trying to match directory names that contain lots of forward slashes.
32

33 ## The above expressions on their own do nothing as we do not make use of the returned value
34 ## To actually use a regular expression we make use of conditionals, eg...
35

36 if("HoxA3" =~ /hox[a-z][0-9]+/i){
37 ## we have Hox gene, do something here..
38 }
39 ## to substitute words we can use the s modifier. We may wish to substitute spaces within a
40 ## a string with underscores.
41 $string = "Goodbye cruel World";
42 $string =~ s/ /_/g;
43

44 ## here we also make use of the g (global) modifier to replace all instances rather than just the first
45 ## match.

Regular expressions make use of a number of special characters and modifiers to represent textual
patterns. The characters represent character classes, followed by a modifier specifying how many
matches should be present to give a match. In Perl, the most widely used special characters are:

• . The dot. This matches any character.

• \d A numeric character. Equivalent to specifying [0-9].

• \s A space.

• \S Non space characters.

• \w Word characters (alpha numeric and some others).

• \b Word boundaries (tabs, spaces, newlines, punctuation).

• \t Tab characters.

A character may be followed by a modifier specifying how many times the character should be
present in the text.

25

• + 1 or more.

• * 0 or more.

• ? 0 or 1.

• {N} Exactly N times.

• {n..N} n to N times.

Other modifiers can be used to specify where a match should be present: ^ and $ specify the
beginning and end of lines respectively. Note that ^ inside a character class indicates an inverted
character class (matches characters not present in the class).

Regular expressions can also be used to capture specific subsections of text. A very common
example would be to extract a sequence identifier from a fasta file. This can easily be done in
Perl.

1 ## $line contains a line from a file. Identifiers begin with the > character.
2 if($line =~ /^>(\S+)/){
3 $seqId = $1;
4 }
5 ## if brackets are used in the regular expression, the values matching within the brackets
6 ## will be assigned to variables $1 - $9. (Ordered from left to right). If you wish to match
7 ## brackets you will need to escape them with backslashes.

There’s a lot more to regular expressions than this, but this may be enough to get started with.

5.0.7 Various operators

Operators are symbols that denote specific operations; like regular expression matching or regular
mathematical operations. We have already come across a few of these, but there are more (and
the following list is not complete).

• + The addition operator. Returns the sum of the left and right operand.

• - The subtraction operator.

• ++ The auto-increment operator. Increases the value of its single operand by 1. There
are in fact two different increment operators; post-increment $v++ and pre-increment ++$v.
The former increments the value after other operations, the latter before. Consider the
difference between $i=5; print $i++; and $i=5; print ++$i;.

• – The auto-decrement operator. Opposite of auto-increment.

• += The increment operator. Increases the value of its left operand by the value of its right
operand.

• -= The decrement operator. Opposite of the increment operator.

• * Multiplication.

• / Division.

26

• *= Sets the value of its left operand to the product of the left and right operands. Identical
to $left = $left * $right.

• /= As above but for division.

• ** Exponentiation. Returns the value of the left operand to the power of the right operand.

• . String concatenation. Concatenates left and right operands.

• .= Concatenates right operand to left operand.

• == Numerical equality operator. Returns TRUE if the value of the left and right operands
are equal. Causes an error if either operand is not numerical.

• != Numerical inequality operator. Returns TRUE if the value of the left and right operands
are not equal. Causes an error if either operand is not numerical.

• eq String equality operator. Returns TRUE if the strings specified by the left and the right
hand operators are the same.

• ne String inequality operator. Returns TRUE if the strings specified by left and right hand
operators are not the same.

• > Numerical greater than. Returns true if left operator is larger than the right operator.

• < Numerical less than. Opposite of above.

• >= Numerical greater than or equal to.

This is an incomplete list, but is sufficient to do rather a lot with. Note that some operators
should be used with numerical values and others with strings (pieces of text). Using the wrong
data types will sometimes raise errors, but can also result in the program silently doing something
unexpected (which is the worst kind of behaviour as it can result in corrupt output).

5.0.8 A somewhat useful example

As an example of something potentially useful we can write a short script that reads in sequences
from a fasta file and identifies sequences that contain a specific pattern within the first N bases.
To do this we’ll make use of most of the techniques outlined above, but we’ll also need to be able
to work out options specified by the user on the command line. The arguments specified to a
Perl script are assigned to a special array called @ARGV, and we’ll make use of this array to work
out what the user wants to do.

The following segment contains a full script that you should be able to run, using the ./scriptname
invocation.

27

1 #!/usr/bin/perl -w
2

3 ## the first line is not really a comment, but is used to make the shell invoke the perl interpreter on the
4 ## script.
5

6 ## first check the command line arguments to make sure that the user has specified three arguments.
7 ## the first argument should give the name of the fasta file containing the sequences to be searched,
8 ## the second argument the pattern to look for, and the third argument the maximum distance from the
9 ## beginning of the sequence.

10

11 if(@ARGV != 3)\{
12 die "usage: script_name fasta_file pattern max_distance_from_edge \n";
13 }
14

15 ## we could also use regular expressions to check if the arguments are of the correct type
16

17 $seqId = "";
18 $seq = "";
19

20 ## open the fasta file and read line by line.
21 open(IN, $ARGV[0]) || die "unable to open $ARGV[0] $!\n";
22 while(<IN>){
23 chomp; ## this removes the end of line character from $_
24 ## does the line look like it contains a sequence identifier?
25 if($_ =~ /^>(\S+)/){
26 $seqId = $1;
27 next; ## go to the next iteration of the loop
28 }
29 ## if we have defined a sequence identifer, we will just assume that the rest of the text contains sequence
30 if(length($seqId)){
31 $seq{$seqId} .= $_;
32 }
33 }
34

35 ## We should now have read all of the sequences into an associative array where the keys are the sequence
36 ## identifiers. We now go through the sequences and check for the pattern.
37 ## The identifiers of sequences which match are printed out to STDOUT.
38 ## We could also print the matching sequences if we wished.
39

40 for $seqId(keys %seq){
41 if($seq{$seqId} =~ /^.{0,$ARGV[2]}$ARGV[1]/){
42 print "$seqID\n";
43 }
44 }
45

46 ## end of the script!

This script probably has a few bugs in it. Working out where those bugs are is a pretty good
exercise for honing your Perl skills. Note also that bad command line arguments can cause all
sorts of problems as the script does not check the arguments given. The script is quite useful
though, as you can use it as a sort of configurable grep to learn more about regular expressions
in Perl.

Be aware that this is not a very memory efficient way of solving the problem as all of the sequences
are read into memory before any processing is done. This is not only memory intensive, but it’s
also slower. It’s been written this way to show the use of hashes and to keep it reasonably short.
I’ve also avoided using custom functions as I’ve not included anything about how to write your
own functions (subroutines in Perl). How to write your own functions is probably the first thing
you should look at after this introduction if you wish to start using Perl seriously.

Good luck with Perl!

28

6 Recommended books

• Unix and Perl to the Rescue

• Computational Biology

7 Unix cheat sheet

7.1 FILE system

Command Meaning
cd DIR change directory to DIR
cd .. go up one directory
cd ~ to to your home directory
pwd show present working directory
ls list items in current directory
ls -a list all items, including hidden ones
ls -lhcrt list all items in long, human-readable format and sort in reverse

order by modification time
ls -F list all items in current directory and show directories with a slash

and executables with a star
tree -C print hierarchical structure of your FILEs and directories (color-

coded)
tree -d print hierarchical structure of all subdirectories
tree -sh print hierarchical structure of FILEs and directories with sizes (-s)

in a human-readable format (-h)
mkdir directoryname make new directory named directoryname
mv FILE1 FILE2 rename FILE1 to FILE2
mv FILE1 ../FILE2 move FILE1 one directory up
cp FILE1 FILE2 copy FILE1 and save it as FILE2
rm FILE remove FILE
rm -r DIRECTORY remove directory and all of its contents

29

http://unixandperl.com/
http://www.staff.hs-mittweida.de/~wuenschi/doku.php?id=rwbook2

7.2 Opening FILEs and extracting information

Command Meaning
less FILE open FILE and scroll through it line by line
wc -l -w -m FILE counting lines, words, and characters in FILE
grep "pattern" FILE print lines from FILE that contain "pattern"
grp -v "pattern" FILE print lines from FILE that do not contain "pattern"
cat FILE > FILE2 write the content of FILE to FILE2
cat FILE » FILE2 append the content of FILE to FILE2
sed -n 11,12p FILE extract lines 11 to 12 from FILE
awk -F "\t" ’$1 > 20
{print $0}’ FILE

Print all columns of a line ($0) in FILE if the value in column 1
($1) is bigger than 20

unzip FILE.zip unzip the zip-compressed FILE
gunzip FILE.gz unzip the gz-compressed FILE
sort -n NUMBERS sort a row of NUMBERS numerically
uniq -c FILE count unique lines in FILE
nano FILE open FILE on the command-line
xdg-open FILE open FILE with the standard program for its file type
eog FILE open FILE (which is a figure) with the Eye of Gnome graphics

viewer program

7.3 Data transfer

Command Meaning
rsync --progress -avz
SRC DEST

transfer from SRC to DEST, show the progress while FILEs are
compressed during the transfer in archive mode (including recurs-
ing into directories)

rsync FILE
user@host://home/usr/

transfer FILE to the folder /home/usr on the remote server
user@host

rsync -avz directory/
DEST

transfer all FILEs saved in directory to DEST

rsync -avz directory
DEST

create the folder directory in DEST and transfer all FILEs in this
directory

scp -r SRC DEST transfer all FILEs in SRC to DEST
scp FILE DEST transfer FILE to DEST

7.4 Executing scripts and programs

Command Meaning
nohup ... & execute . . . in the background
nohup ... > FILE.txt
&

execute . . . in the background and redirect output to FILE.txt

ps -p ID print the status of a process with the specified process-ID
kill ID stop the process witht the specified process-ID
pkill NAME stop all processes with NAME (NAME could be for example ’R’

or ’python’)
top provides an ongoing look at processor activity in real time

30

7.5 Networking

Command Meaning
ssh user@host connect to host as user
ssh -X user@host connect to host as user with X11 forwarding enabled (you can

open programs with graphical user interface)

7.6 Help

Command Meaning
command --help Lists the options for command
man command opens the manual page for command (exit with ’q’)

7.7 Tricks

Pipe output from one command with | as input to another command.

Command Meaning
TAB key auto-completion of commands, FILE names etc.
UP or DOWN arrows move through the history of your commands
history Get overview of the commands you have used
* Allows to generalize file names. For example, *fasta refers to all

fasta files in a directory

31

	Remote connection
	Basic orientation in the command line
	Directory navigation
	Conventional directory layout
	Moving in and out of directories with cd
	Tip
	What is saved in the current directory?
	Have a look at the directory structure
	Tip
	Create, move and remove files and directories
	Tip

	Data transfer between computers
	rsync
	sftp/lftp
	Tip

	Running programs (and the PATH variable)
	Retrieving basic information from common NGS files
	Uncover the content of a file and search for patterns
	Counting words, lines, and characters with 'wc' and searching for patterns with 'grep'
	INFO on regular expressions
	Combine the content of files with 'cat' and '>'
	Counting filtered reads in SAM files with 'awk'

	Bonus section on PERL
	Variables in Perl
	Assigning variables
	Data types
	Program flow: loops and conditionals
	Reading and writing data
	Regular Expressions
	Various operators
	A somewhat useful example

	Recommended books
	Unix cheat sheet
	FILE system
	Opening FILEs and extracting information
	Data transfer
	Executing scripts and programs
	Networking
	Help
	Tricks

