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RAD-Seq is a young and successful NGS method

source: http://ngs-expert.com/2013/11/26/rad-seq-publications-in-2013/
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Reductive de novo genome sequencing and SNP
identification

RAD-Seq of the sunflower genome (Illumina)
44.7M reads (PE:40bpx80bp)

De novo assembly of ca. 15.2 Mb in >42,000 contigs
Identified >94,000 putative SNPs across six lines

(Pegadaraju et al., 2013) 3 / 47
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Genome-wide association study (GWAS)

No reference genome previously available
identified >100,000 SNPs across 138 genotypes
Related SNPs to 17 phenotypic traits in a field trial
Increasing flexibility and speed of crop breeding

Figure : Miscanthus sinensis

source: http://ngs-expert.com/2013/11/26/rad-seq-publications-in-2013/ (Slavov et al., 2014)
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Population genomics and parallel adaptive
differentiation in threespine sticklebacks

Reference genome available
>45,000 SNPs across 100 individuals (’genotyping by
sequencing’)
Consistent signatures of selection between two oceanic and
three freshwater populations
Identified 31 candidate genes of evolutionary significance

Figure : FST for SNPs in sliding windows across the genome between
oceanic and freshwater populations

(Hohenlohe et al., 2010)
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Purpose of RAD-seq

Genome-reduction method to fragments adjacent to restriction
enzyme recognition sites.
High-throughput genotyping of populations (using barcoding)
at relatively low cost.
Makes genome-scale population genetic studies possible for
non-model species lacking a reference genome.
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Original RAD-Seq protocol

Developed by (Baird et al., 2008; Miller et al., 2007).
DNA fragments adjacent to restriction enzyme recognition
sites

5’ GAATTC 3’
3’ CTTAAG 5’

EcoRI recognition site
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Step 1: cut DNA

Note: Bias in GC content of restriction site samples the
genome non-randomly
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Step 2: ligate P1 adapter

Amplification primer site

Sequencing primer site (Illumina-specific)

Barcode
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Barcoding allows to pool samples
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Step 3: Shearing and size selection

Sonication with ultrasonic frequencies (>20 kHz)

X

X
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Step 4: Ligation of P2 adapter with ’Y’ structure

X

P2 adapter: AGATCGTCC
GA

TCTAGCGTCCT

P2 primer: TCTAGCGTCCT

P2 primer binds only when P2 primer site
was completed by amplification starting
from the P1 adapter (removes Y-structure)
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Step 5: Sequence amplified reads on Illumina

Sequence 100 or so bp on Illumina

Random shearing of 3’ends helps to detect PCR duplicates
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Paired-end sequencing of RAD-tags allows for de
novo genome sequencing

(Pegadaraju et al., 2013)
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Calling SNPs from RAD-tags

(Hohenlohe et al., 2010)
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Summary statistics (e.g. population differentiation)
along sliding windows

(Hohenlohe et al., 2010)
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Shearing introduces bias

Bias in sequencing depth towards larger fragment sizes

(Davey et al., 2013)

Potential reason: Sonicators shear fragments of different lengths
with varying efficiencies
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Amplification bias in favor of high GC content

Read depths are influenced by GC content and number of PCR
cycles, with (A) or without PCR duplicates (B).

(Davey et al., 2013)

Modifications of PCR enrichment can help (see (Puritz et al., 2014b))
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Double-digest RAD-seq (Peterson et al., 2012)

Single digest RAD-Seq

Double digest RAD-seq

Sequencing of fragments:
- within a specific size range
- flanked by two different cutting sites

EcoRI recognition site
SbfI recognition site
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ddRAD compared to single-digest RAD sequencing

1 Rapid and ’cheap’ protocol (8 hrs hands-on): Doesn’t require
difficult and high cost of shearing and enzymatic end-repair.

2 Lower number of loci but increased coverage and, thus, higher
chance to target the same loci in different individuals.

3 Coverage expected to be equal among individuals and highest
for fragment lengths targeted by size selection.

4 Combinatorial indexing allows to multiplex more individuals
(up to 12 barcodes were affordable for single-digest RAD-Seq).

5 PCR duplicates can only be detected with specific adapters
(Schweyen et al., 2014; Tin et al., 2014)

6 Precise size selection reduces amplification bias (Pippin Prep
instrument - Sage Science) (DaCosta and Sorenson, 2014).

7 Null alleles, which can inflate homozygosity (underestimate
diversity) by allele-dropout, are more frequent in ddRAD (two
recognition sites) (Arnold et al., 2013).
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Combinatorial indexing allows for high multiplexing
levels in ddRAD-Seq

Inline barcode (sequenced)
Adapter P1

Flowcell annealing

Adapter P2
Index adapter (Illumina)

Flowcell annealing

48 x 12 = 576 (multiplexing level)

added first, with ligation of adapters, allows to pool samples
added second, with PCR primer, allows to combine multiple pools
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Pooling recommendations

Critical: equimolar concentrations of individuals expected
Recommended: >40 individuals/pool

Higher numbers
+ decrease unequal representation of individuals in the pool
- make it more more difficult to discriminate minor allele
frequencies from sequencing errors
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Great adjustability of the number of markers makes
ddRAD suitable for a broader range of approaches

than RAD-Seq

Number of markers adjusted by:
Cutting frequency of restriction enzymes
Size selection

(Peterson et al., 2012) 23 / 47
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How to predict the number of fragments

Based on our own study on Guppy
Targeted coverage: 20x per individual
Pooling: 60 individuals
Sequencing output: 24M reads (12M fragments, minimum for
Illumina v2 paired-end kits)
Fragments per individual: 12M/60 = 200,000
Target: 10,000 fragments (to reach a 20x coverage)

What combination of restriction enzymes to use to obtain the
appropriate cutting frequency?
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In silico genome digestion

Simulate restriction enzyme digestion with the R package simRAD
(Lepais and Weir, 2014)

Based on 10% of the entire genome size

Without reference genome: evaluate double-digest fragments on
Tape station
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Recovery of in silico predicted loci

(DaCosta and Sorenson, 2014)

Targeted: 178-328bp, but short restriction fragments (38–178 bp) were
carried through the agarose gel size selection step
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Sequencing depth decreases with fragment lenth

(DaCosta and Sorenson, 2014)

Opposite to RADseq (shearing bias)
Negative correlation between depth and fragment length in the
178–200 bp range, not for smaller loci.
Among-locus variation in sequencing depth was consistent
among samples. 27 / 47
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Sequencing depth bias in favor of loci with high GC
content

(DaCosta and Sorenson, 2014)

Combined with a GC-rich recognition sequence, this can result
in an overrepresentation of GC-rich portions of the genome
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PCR duplicates

PCR duplicates are statistically nonindependent and inflate the
confidence of genotype calls at a site.
Can inflate the proportion of homozygous loci (allele dropout)
(Schweyen et al., 2014).
RAD-tags: homologous sequences start at the same location
and can not be discriminated from PCR duplicates if they have
the same length. All are generally removed
ddRAD-tags: Paired-end sequences always start and end at
the same position
Detection of duplicate reads only possible with specific
adapters of random four bases that are ligated to the first
index read of the template molecule before PCR. (Schweyen
et al., 2014; Tin et al., 2014).
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Detect PCR duplicates in paired-end RAD
sequencing

(Schweyen et al., 2014)
PCR bias amplifies b more
than a
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PCR duplicates in ddRAD - not detectable

(Schweyen et al., 2014)
locus 2 with mutated cut site
can have equal coverage as
locus 1
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Degenerate base regions detect PCR duplicates in
ddRAD

(Schweyen et al., 2014)
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STACKS - basic pipeline for RAD-Seq

STACKS - software pipleine to build loci from RADseq reads and
use them for population genomics and phylogeographic analyses.

(Catchen et al., 2013)
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STACKS - ustacks de novo assembly step 1

Only exact matches are assembled
Secondary reads are set aside
The minimum stack depth parameter controls the number of
raw reads required to form an initial stack

(Catchen et al., 2013)
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STACKS - Ustacks de novo assembly step 2

Stacks with few nucleotide differences are merged.
Repetitive sequences with many alleles are excluded

(Catchen et al., 2013) 35 / 47
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STACKS - Ustacks de novo assembly step 3

Alignment of secondary reads (those not indcluded in stacks)
against stacks.
Alleles are discriminated from sequencing errors by their
frequency.

(Catchen et al., 2013)
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STACKS - populations or genotypes pipeline

(Catchen et al., 2013) 37 / 47
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DDocent (Puritz et al., 2014a)

Uses stand-alone software packages to perform
quality trimming
adapter removal
de novo assembly of RAD loci
read mapping
SNP and InDel calling
data filtering.

Identifies more SNPs at a higher coverage than STACKS, due to
simulatneous use of forward and reverse reads during
alignment to reference instead of clustering
quality trimming instead of removing entire reads
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ezRAD (Toonen et al., 2013)

Uses 2 isoschizomers of restriction enzymes specific to the
same recognition sequence (GATC)
digested DNA is inserted in Illumina TruSeq library preparation
kit.
DNA is digested and single- or dual-indexed, then pooled and
size-selected.

Advantages

non-PCR kits can avoid PCR duplication and bypass any PCR
bias.

Disadvantages

All reads start with the same four bases (GATC).
Low diversity libraries can lead to poor read quality on Illumina
sequencers. Use e.g. PhiX spiking or dark-cycling.
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2bRAD (Wang et al., 2012)

Type IIb restriction endonuclease to excise 36-bp fragments.
Number of loci customized by base-selective adapters.

(Wang et al., 2012) 40 / 47
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2bRAD (Wang et al., 2012)

Advantages

Extremely simple and cost-effective: no purification or size
selection.
No biases due to fragment size selection.
Sequencing either strand of the restriction fragments allows for
the use of strand bias as a quality filtering criteria.

Disadvantages

36-bp tags could be too short to be non-ambiguously mapped
in highly duplicated genomes.
Likely not cross-mappable across large genetic distances.
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