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The focal species Fucus serratus
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Recent changes in southern edge populations
of F. serratus

1999

2010

90% abundance decline

Reduced reproductive capacity
[Viejo et al., 2011; Ecography]
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Isolation-by-distance pattern increases false positive rate
[Fourcade et al. 2013; Mol. Ecol., Bierne et al., 2013; Mol. Ecol.]
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The rate of genetic change due to genetic drift is proportional
to 1

2Ne

The effectiveness of selection over genetic drift (drift
dominates if selection <

1
2Ne

Nucleotide diversity 4Nu with u being the mutation rate

In a closed population, Ne can indicate MLH. Gene flow
uncouples Ne from genetic stochasticity
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Alternative reasons for spatial outliers
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Coupling of endogenous with exogenous gene flow barriers
[Bierne et al., 2011; Mol. Ecol.]

red: endogenous, blue: exogenous alleles
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