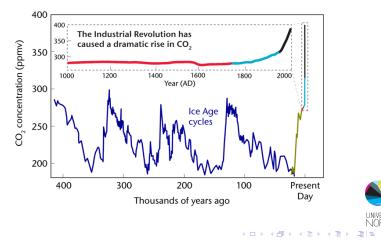
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

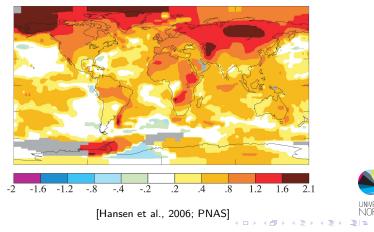
Climate change impact on the seaweed Fucus serratus, a key foundational species on North Atlantic rocky shores

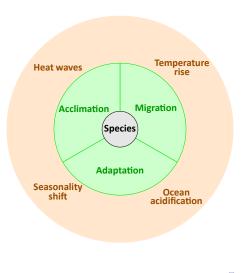
Alexander Jüterbock

Alexander.Juterbock@uin.no


Faculty of Biosciences and Aquaculture University of Nordland

PhD Thesis, 01.06.2010-12.08.2013


Variations in CO_2 concentrations from ice core records


Paper III

Recent climate change

2001–2005 mean surface temperature anomaly (Base Period = 1951-1981) Global mean = 0.54

	C	limate o	change r	esponses	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

Paper III

High sensitivity of intertidal species

5/52

Paper III

Acknowledgements

Seaweeds are key species in temperate North Atlantic regions

Between the 10°C summer and the 20°C winter isotherm

6 / 52

© Hoarau, G., 2010

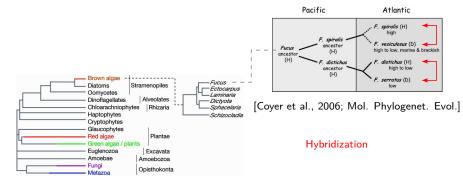
Paper I

Paper II

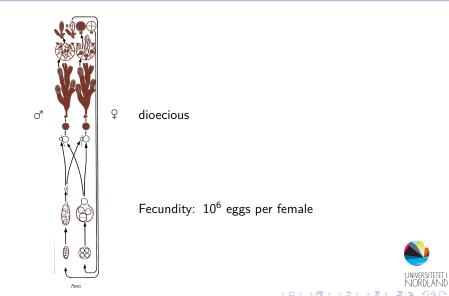
Paper III

Overall conclusion

Acknowledgements

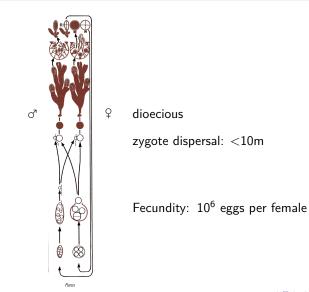

The focal species *Fucus serratus*

< □ > < @ > < E > < E > E = のQ () 7/52



[Cock et al., 2010; Nature]

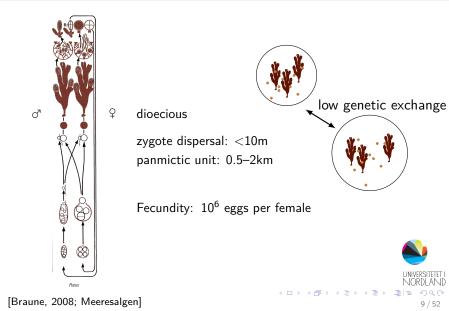
Introduction Paper I Paper II Paper III Overall conclusions Acknowledgemen


Life cycle and dispersal of *Fucus serratus*

[Braune, 2008; Meeresalgen]

Introduction Paper I Paper II Paper III Overall conclusions Acknowledge

Life cycle and dispersal of *Fucus serratus*



UNVERSITETTI NORDLAND (UNVERSITETTI NORDLAND

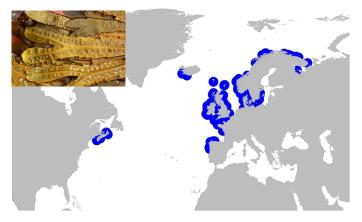
[Braune, 2008; Meeresalgen]

 Introduction
 Paper I
 Paper II
 Paper III
 Overall conclusions
 Acknowledgemen

 Life cycle and dispersal of Fucus servatus

Paper I

Paper II


|

Paper III

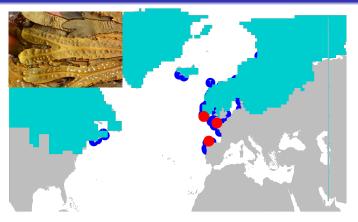
Overall conclusion

Acknowledgements

Distribution of F. serratus in the North Atlantic

Occurrence records

イロト イボト イヨト イヨト


Paper I

Paper II

Paper III

Acknowledgements

Distribution of *F. serratus* in the North Atlantic Last Glacial Maximum 18-20,000 years ago

• Occurrence records

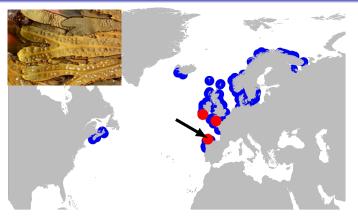
• Glacial Refugia [Hoarau et al., 2007; Mol. Ecol.]

イロト イヨト イヨト

10 / 52

Paper I

Paper II


F

Paper III

Overall conclusion

Acknowledgements

Distribution of F. serratus in the North Atlantic

Occurrence records

• Glacial Refugia [Hoarau et al., 2007; Mol. Ecol.]

イロト イヨト イヨト

10 / 52

Paper II

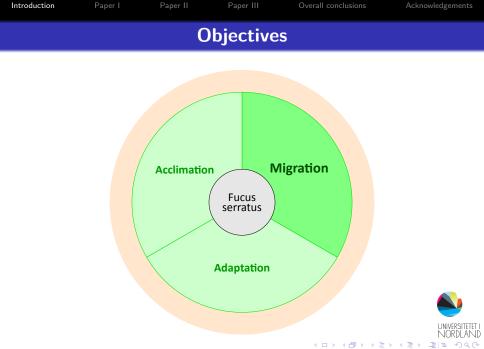
P

Paper III

Acknowledgements

Recent changes in southern edge populations of *F. serratus*

1999


2010

- 90% abundance decline
- Reduced reproductive capacity

A D N A D N A D N A D N

[Viejo et al., 2011; Ecography]

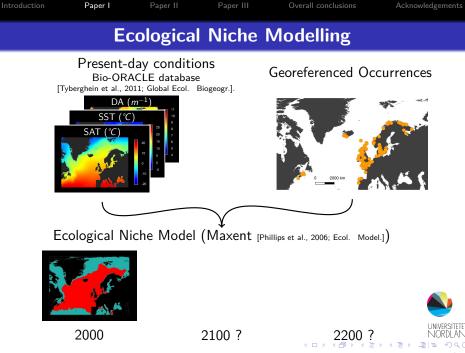
12 / 52

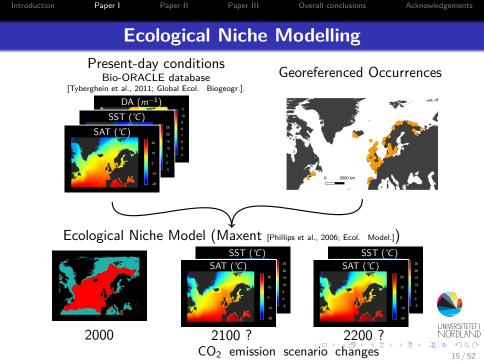
Ecology and Evolution

Open Access

Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal

Alexander Jueterbock¹, Lennert Tyberghein^{2,3}, Heroen Verbruggen⁴, James A. Coyer⁵, Jeanine L. Olsen⁶ & Galice Hoarau¹

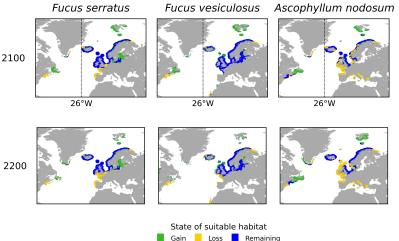

Fucus serratus


Fucus vesiculosus

Ascophyllum nodosum

- Shores with biggest ecological change?
- Shift as an assemblage?

Paper I


1

Paper III

Overall conclusion

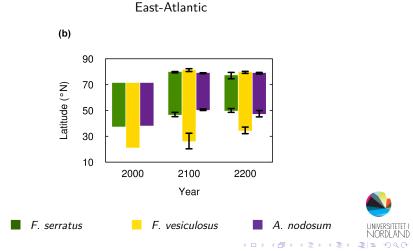
Acknowledgements

Predicted Niche Shifts Based on the intermediate IPCC scenario A1B

Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			Distribution		

Shores with biggest ecological change?

- Disappearance from shores south of Brittany and from Nova Scotia
- Suitable habitat in the southern Arctic
- Shift as an assemblage?


Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			Onclusio Distribution		

- Shores with biggest ecological change?
 - Disappearance from shores south of Brittany and from Nova Scotia
 - Suitable habitat in the southern Arctic
- Shift as an assemblage?

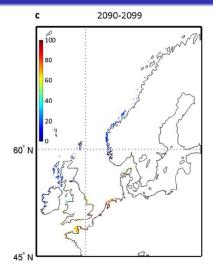
Predominant seaweeds shift northward as an assemblage

18 / 52

Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			Onclusio Distribution		

- Shores with biggest ecological change?
 - Disappearance from shores south of Brittany and from Nova Scotia
 - Suitable habitat in the southern Arctic
- Shift as an assemblage?

Yes


Paper II

Paper III

Overall conclusion

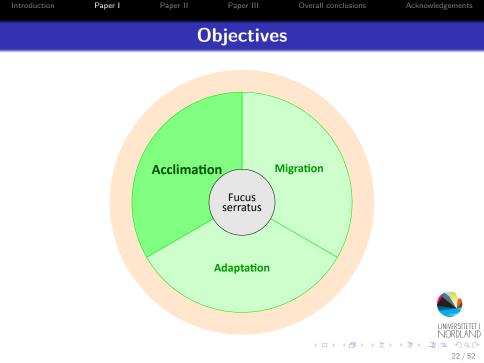
Acknowledgements

Climate change impact also on subtidal kelp

Percentage of models forecasting a disappearance of *Laminaria digitata*

∃ ► < ∃ ►</p>

< 口 > < 同 >


Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			Distribution		

- Shores with biggest ecological change?
 - Disappearance from shores south of Brittany and from Nova Scotia
 - Suitable habitat in the southern Arctic
- Shift as an assemblage?

Yes

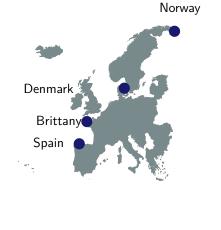
Mitigation by plasticity and adaptation?

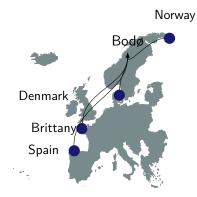
Thermal stress resistance of the brown alga *Fucus serratus* along the North-Atlantic coast: acclimatization potential to climate change

Alexander Jueterbock, Spyros Kollias, Irina Smolina, Jorge M.O. Fernandes, James A. Coyer, Jeanine L. Olsen, Galice Hoarau

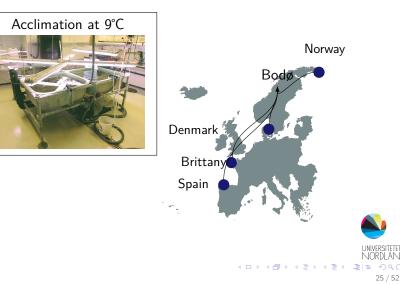
Marine Genomics. Submitted

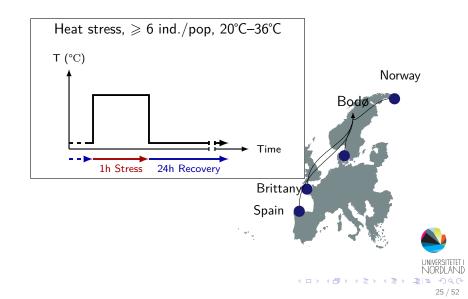
Plasticity along the entire E-Atlantic range of distribution

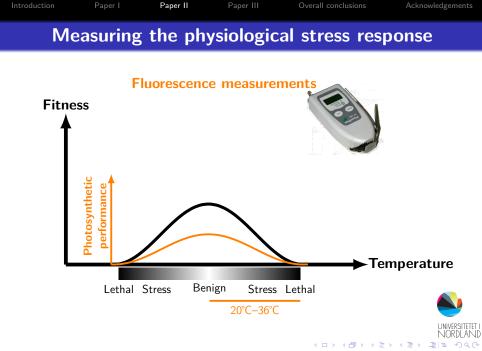

Local adaptation Population-specific stress response? Extinction risk Where will temperatures exceeed the species' thermal tolerance?



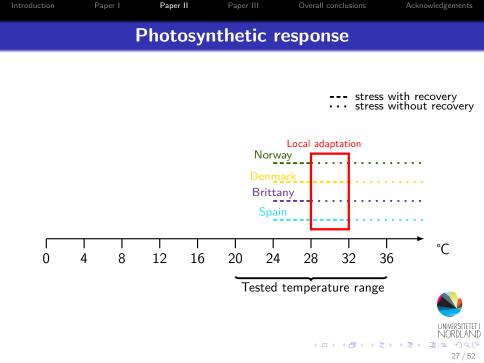
Common-garden heat stress experiments

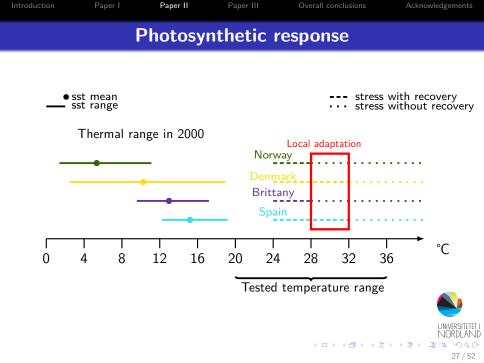

Introduction Paper I Paper II Paper II Overall conclusions Acknowledgements
Common-garden heat stress experiments

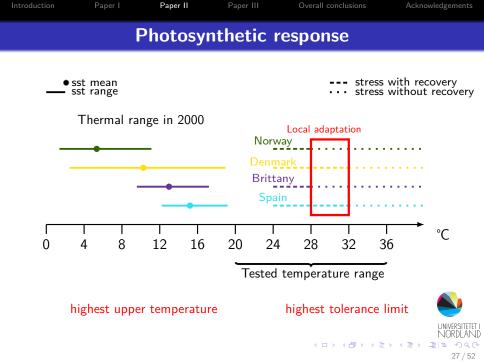

Acknowledgements


Common-garden heat stress experiments

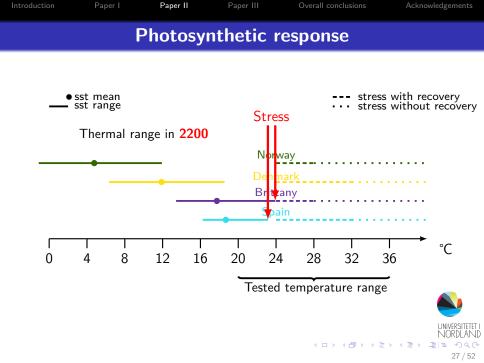
Introduction Paper I Paper II Paper III Overall conclusions Acknowledgeme

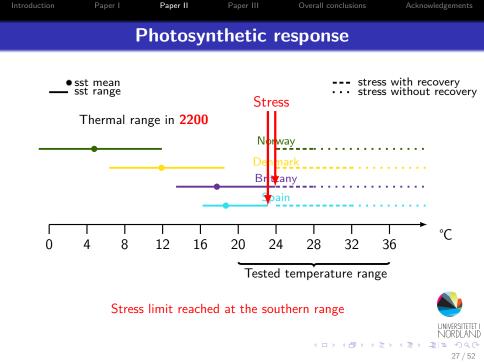

Common-garden heat stress experiments





^{26 / 52}





Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
		С	Onclusio Plasticity	ns	
Plastic	city along t	he entire E	-Atlantic ra	nge of distribution	1

Local adaptation Population-specific stress response?

Extinction risk Where will temperatures exceeed the species' thermal tolerance?

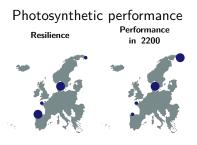
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements				
	Conclusions Plasticity								
Plastic	city along t	he entire E	-Atlantic ra	nge of distributior	l				

Local adaptation Population-specific stress response? Highest resilience in **Denmark and Spain**

Extinction risk Where will temperatures exceeed the species' thermal tolerance?

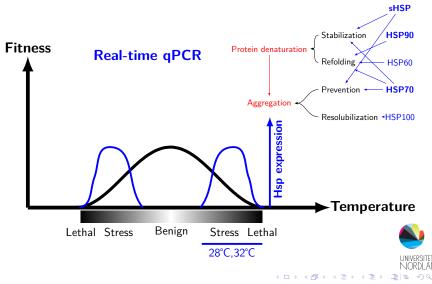
Photosynthetic performance

Resilience


Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
		C	onclusio	ns	
			Plasticity		
Plastic	city along t	he entire E	-Atlantic ra	nge of distribution	1

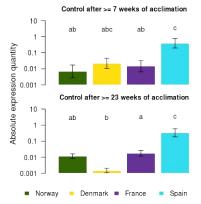
Local adaptation Population-specific stress response?

Highest resilience in Denmark and Spain

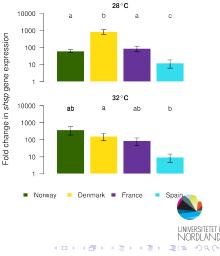

Extinction risk Where will temperatures exceeed the species' thermal tolerance?

In Brittany and Spain

ntroduction


Paper III

Overall conclusion


Acknowledgements

sHsp gene expression

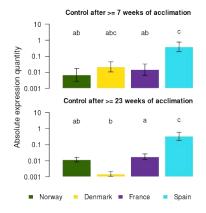
Before heat shock exposure

After 24h recovery

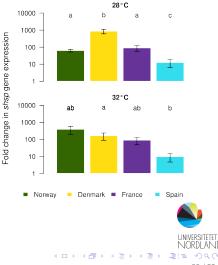
30 / 52

Introduction

Paper III


Overall conclusion

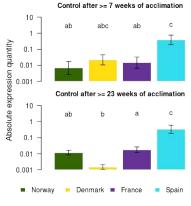
Acknowledgements


sHsp gene expression

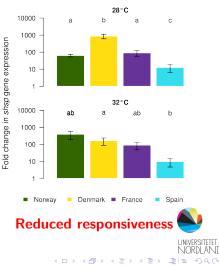
Before heat shock exposure

After 24h recovery

High constitutive expression


30 / 52

Paper III


sHsp gene expression

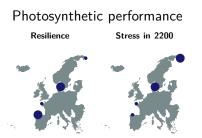
Before heat shock exposure

After 24h recovery

High constitutive expression

30 / 52

AND

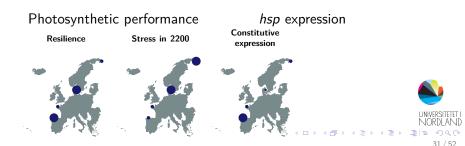

Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
		C	onclusio Plasticity	ns	
Plast	icity along t	he entire E	-Atlantic ra	nge of distribution	1

Local adaptation Population-specific stress response?

Highest resilience in Denmark and Spain

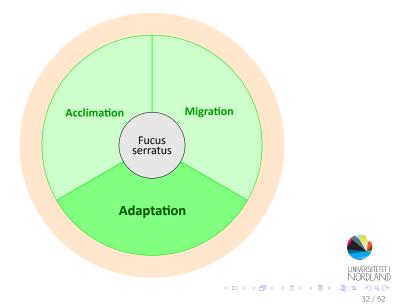
Extinction risk Where will temperatures exceeed the species' thermal tolerance?

In Brittany and Spain


Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
		C	onclusio Plasticity	ns	
Plasti	city along t	the entire E	-Atlantic ra	nge of distribution	1

Local adaptation Population-specific stress response?

Highest resilience in Denmark and Spain


Extinction risk Where will temperatures exceeed the species' thermal tolerance?

In Brittany and Spain

Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements					
Conclusions Plasticity										
Plasticity along the entire E-Atlantic range of distribution										
Local	Local adaptation Population-specific stress response? Highest resilience in Denmark and Spain Spain of reduced responsiveness 									
Extinc	Extinction risk Where will temperatures exceeed the species' thermal tolerance? In Brittany and Spain									
		-	ponsiveness							
	tosynthetic esilience	performance Stress in 2200	e hs Constitution expression							
					UNVERSITETI NORDLAND ション ミロニ つくへ 31/52					

Objectives	Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			C)bjective	S	

A decade of climate change on North Atlantic rocky shores - can the seaweed *Fucus serratus* adapt to rising temperatures?

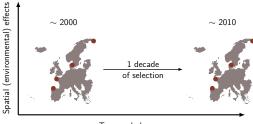
Alexander Jueterbock, Spyros Kollias, James A. Coyer, Jeanine L. Olsen, Galice Hoarau

Manuscript

- Assess the effective population size N_e of F. serratus along its distributional range
- Identify genetic changes of *F. serratus* in the NE-Atlantic over the past 10 years

Paper II Paper III Sampling scheme (50–75 ind./pop) Spatial (environmental) effects ~ 2000 ~ 2010 1 decade of selection

Temporal changes


UNIVERSITETET

ъ

イロト イヨト イヨト

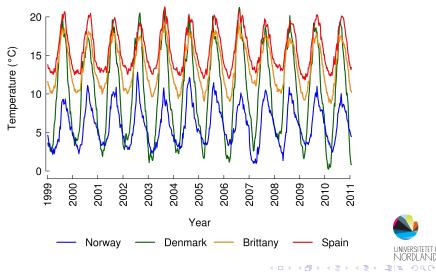
Introduction

Methods and analysis

Paper II

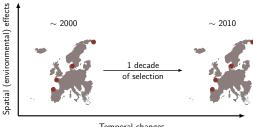
Temporal changes

Temperature characterization


- Genotyping
 - 31 microsatellite markers (20 EST-linked)
- Analysis
 - effective population size (N_e)
 - Allelic richness (α)
 - Temperature associated outlier loci

< ロ > < 同 > < 回 > < 回 >

ntroduction Paper I Paper II Paper III Overall conclusions


Temperature conditions

37 / 52

Introduction

Methods and analysis

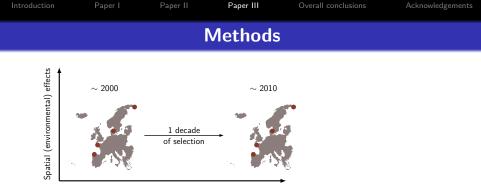
Paper II

Temporal changes

- Temperature characterization
- Genotyping
 - 31 microsatellite markers (20 EST-linked)
- analysis
 - effective population size (N_e)
 - Allelic richness (α)
 - Temperature associated outlier loci

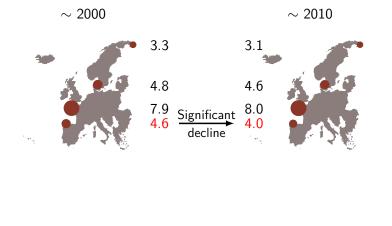
< ロ > < 同 > < 回 > < 回 >

Estimates excluding outlier loci


Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			onclusion		

- Assess the effective population size N_e of F. serratus along its distributional range
 - Specifically low at the range limits
 - Highest in Brittany
- Identify genetic changes of *F. serratus* in the NE-Atlantic over the past 10 years

 N_e in 2010


Temporal changes

- Temperature characterization
- Genotyping
 - 31 microsatellite markers (20 EST-linked)
- analysis
 - effective population size (N_e)
 - Allelic richness (α)
 - Temperature associated outlier loci

< ロ > < 同 > < 回 > < 回 >

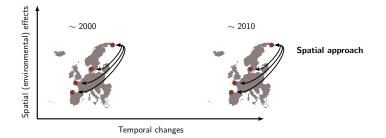
< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			onclusion		

- Assess the effective population size N_e of F. serratus along its distributional range
 - Specifically low at the range limits
 - Highest in Brittany
- Identify genetic changes of *F. serratus* in the NE-Atlantic over the past 10 years
 - α: significant decline in Spain

 $\textit{N}_{\rm e}$ in 2010

 α in 2010


ヨトィヨト

Introduction Paper I Paper II Paper III

Overall conclusion

Acknowledgements

Methods and analysis

- Temperature characterization
- Genotyping
 - 31 microsatellite markers (20 EST-linked)
- analysis
 - effective population size (N_e)
 - Allelic richness (α)
 - Temperature associated outlier loci

		Spati	al outlie	r loci	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

 ~ 2000

 ~ 2010

E6, L58
 F36, F49, L58
 F19, L58

1: F19, L58 2: E9, F22, F49, L58 3: E9, F19, F60, L58

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④●●

45 / 52

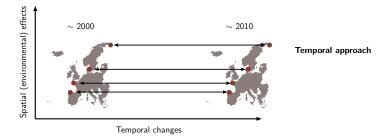
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements				
Spatial outlier loci									
	~ 2000			~ 2010					
		Ŋ			9				
		Outlie	ers in both years						
	1: E6,	L58		1: F19, L58					
		, F49, L58		2: E9, F22, I	F49 158				
	3: F19			3: E9, F19, I					

UNIVERSITETET I NORDLAND

45 / 52

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Genetic incompatibilities [Bierne et al., 2011; Mol. Ecol.]
- Isolation-by-distance pattern increases false positive rate [Fourcade et al. 2013; Mol. Ecol., Bierne et al., 2013; Mol. Ecol.]

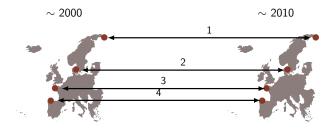


Introduction

Paper II

Paper III

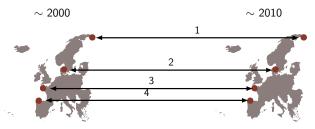
Methods and analysis


- Temperature characterization
- Genotyping
 - 31 microsatellite markers (20 EST-linked)
- analysis
 - effective population size (N_e)
 - Allelic richness (α)
 - Temperature associated outlier loci

< ロ > < 同 > < 回 > < 回 >

		Tomore	wal auti	ar la si	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

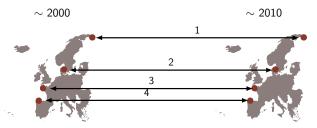
Temporal outlier loci



- 1:
- 2: F19, F36
- 3: B113, B128, E6, E9, F12, F72, L58
- 4: F19, F65, F69, F72

		Tomo	val outli		
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

Temporal outlier loci


Highest proportion of outliers: strongest selection

- 1:
- 2: F19, F36
- 3: B113, B128, E6, E9, F12, F72, L58
- 4: F19, F65, F69, F72

			val outli	• •	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

Temporal outlier loci

Highest proportion of outliers: strongest selection Congruent outlier: broad-scale selection

- 1:
- 2: F19, F36
- 3: B113, B128, E6, E9, F12, F72, L58
- 4: F19, F65, F69, F72

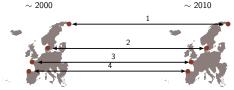
Spatio-temporal outlier loci

 ~ 2010

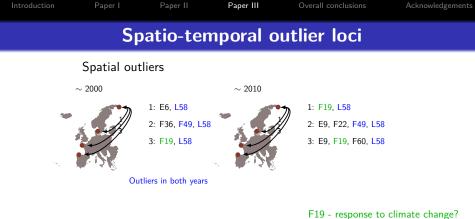
Spatial outliers

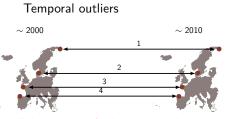
 ~ 2000

1: E6, L58 2: F36, F49, L58


3: F19, L58

1: F19, L58 2: E9, F22, F49, L58 3: E9, F19, F60, L58


Outliers in both years


Temporal outliers

Highest proportion of outliers: strongest selection Congruent outlier: broad-scale selection

Highest proportion of outliers: strongest selection Congruent outlier: broad-scale selection

Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements
			onclusion		

- Assess the effective population size N_e of F. serratus along its distributional range
 - Specifically low at the range limits
 - Highest in Brittany
- Identify genetic changes of *F. serratus* in the NE-Atlantic over the past 10 years
 - α : significant decline in Spain
 - Strongest selective pressure in Brittany and Spain
 - Locus F19: Adaptive value under climate change?

		•							
Overall conclusions									

 Biggest changes: Arctic and warm-temperate regions

Importance of populations

- Norway: Colonization of the Arctic?
- Denmark: Center of distribution
- Brittany: Center of adaptability
- Spain: Insufficient plasticity and adaptability

F. serratus, 2200, SRES A1B scenario

State of suitable habitat Gain Loss Remaining

Overall conclusions									
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements				

 Biggest changes: Arctic and warm-temperate regions

Importance of populations

- Norway: Colonization of the Arctic?
- Denmark: Center of distribution
- Brittany: Center of adaptability
- Spain: Insufficient plasticity and adaptability

F. serratus, 2200, SRES A1B scenario

State of suitable habitat Gain Loss Remaining


		Overa	all conclu	isions	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

 Biggest changes: Arctic and warm-temperate regions

Importance of populations

- Norway: Colonization of the Arctic?
- Denmark: Center of distribution
- Brittany: Center of adaptability
- Spain: Insufficient plasticity and adaptability

F. serratus, 2200, SRES A1B scenario

State of suitable habitat Gain Loss Remaining

		Overa	ll conclu	isions	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

 Biggest changes: Arctic and warm-temperate regions

Importance of populations

- Norway: Colonization of the Arctic?
- Denmark: Center of distribution
- Brittany: Center of adaptability
- Spain: Insufficient plasticity and adaptability

F. serratus, 2200, SRES A1B scenario

State of suitable habitat Gain Loss Remaining

Overall conclusions									
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements				

 Biggest changes: Arctic and warm-temperate regions

Importance of populations

- Norway: Colonization of the Arctic?
- Denmark: Center of distribution
- Brittany: Center of adaptability
- Spain: Insufficient plasticity and adaptability

F. serratus, 2200, SRES A1B scenario

State of suitable habitat Gain Loss Remaining

		Overa	ll conclu	isions	
Introduction	Paper I	Paper II	Paper III	Overall conclusions	Acknowledgements

 Biggest changes: Arctic and warm-temperate regions

Importance of populations

- Norway: Colonization of the Arctic?
- Denmark: Center of distribution
- Brittany: Center of adaptability
- Spain: Insufficient plasticity and adaptability

F. serratus, 2200, SRES A1B scenario

State of suitable habitat Gain Loss Remaining

Paper II Paper III Introduction

Acknowledgements

Acknowledgements

Supervisors:

Galice Hoarau 🌒 Jorge Fernandes 🌒 Jeanine L. Olsen 👹

Spyros Kollias Irina Smolina Ketil Eiane Kurt Tande Mark Powell Randi Restad Sjøvik Steinar Johnson All lab- and wetlab technicians All administrative staff All friends

Dissertation Committee

UNYERSTET Olivier De Clerck Klaas Pauly

Heroen Verbruggen

Lennert Tyberghein 🕣

James A. Coyer 🔘 Constitutions

Appendix	References	Brown algae	Paper I	Paper II	Paper III

7 Appendix

8 References

9 Brown algae

10 Paper I

11 Paper II

12 Paper III

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		Referen	ces l		
		luey, R.B.; Gilchrist, G.W.; cks global climate warming 175.		ura.	
	Keeping pace with fast cli	AcAdam, A.G.; Boutin, S. (mate change: can arctic life	· · · · · · · · · · · · · · · · · · ·		
	Bierne, N. (2010)	ive Biology 44(2):140–151.			a la alta dal a al
	population Evolution 64(11):3254–32	of local hitchhiking in a var 72.	ied environment and g	iodai nitenniking in a si	abaividea
		e E.; Bonhomme, F.; David why genome scans may fail :2044–2072.		on genes	
	Bierne, N.; Roze, D.; Wel	ch, J. (2013)		2	
	Molecular Ecology 22(8):2		sometimes so frequent	.?	
	Bradshaw, W. E. and Hol: Climate change - Evolutio Science 312(5779):1477–1	nary response to rapid clim	ate change		S
					UNIVERSITETET I NORDLAND

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		Reference	ces II		
	Braune, W. (2008)				
	Meeresalgen Koeltz Scientific Books Kö	nigstein, Germany.			
	Bussotti, F.; Desotgiu, R; F	Pollastrini, M.; Cascio, C. ((2010)		
	The JIP test: a tool to scre Scandinavian Journal of Fo			hange	
	Charlesworth, B.; Nordborg	g, M.; Charlesworth, D. (19	997)		
	The effects of local selection genetic diversity in subdivior Genetic Research 70:155–1	led populations	and background selec	tion on equilibrium pat	terns of
	Cover, J. A.; Peters, A.F.;		2003)		
	Post-ice age recolonization in Northern Europe Molecular Ecology 12:1817		<i>us serratus</i> L. (Phaeop	hyceae; Fucaceae) pop	ulations
	Coyer, J. A.; Hoarau, G.; C	Judot-Le Seca. MP.: Star	n. W.T. (2006)		
	A mtDNA-based phylogeny Molecular Phylogenetics an	of the brown algal genus		iyta; Phaeophyta)	
	Cock, J.M.; Sterck, L.; Rou	uzé, P. et al. (2010)			
	The Ectocarpus genome ar	nd the independent evolution	on of multicellularity in	ı brown algae	

UNIVERSITETET I NORDLAND

3 / 26

・ロト・西ト・ヨト・ヨト シック

Nature 465(3):617-621.

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		Reference	s III		
	Excoffier, L.; Foll, M.; Pet Genetic Consequences of F Annual Review of Ecology,		40:481-501.		
	Excoffier, L.; Lischer, H.E. Arlequin suite ver 3. 5: a r Windows Molecular Ecology Resourd	new series of programs to perf	form population gen	etics analyses under Lir	nux and
		lgae and macrofauna assembl permae) in Skagerrak, Norwa		<i>tus</i> L. (Phaeophyceae)	and
	Fourcade, Y.; Chaput-Bar	dy, A.; Secondi, J.; Fleurant, (rread in river organisms? Frac		· ·	h bias in
	Halpern, B.S.; Walbridge, K.S.; Ebert, C.; Fox, H.E.	S.; Selkoe, K.A.; Kappel, C.V and others (2010) apact on marine ecosystems	.; Micheli, F.; D'Ag	rosa, C.; Bruno, J.F.; C	asey,
		dy, R.; Lo, K.; Lea, D.W.; Me	dina-Elizade, M. (20	006)	

Proceedings of the National Academy of Sciences 103(39):14288–14293.

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		Referenc	es IV		
	Hoarau, G.; Coyer, J.A.; Ve Glacial refugia and recoloni Molecular Ecology 16(17)::	zation pathways in the bro		ratus	
	Hofer, T.; Ray, N.; Wegma Large Allele Frequency Diff Drift During range Expansi Annals of Human Genetics	erences between Human C ons than by Selection		more Likely to have Oc	curred by
	Jimenez-Valverde, Alberto Insights into the area under species distribution modelli Global Ecology and Biogeo	r the receiver operating chang	racteristic curve (AUC	C) as a discrimination m	neasure in

Jueterbock, A.; Tyberghein, L.; Verbruggen, H.; Coyer, J.A.; Olsen, J.L.; Hoarau, G. (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal *Ecology and Evolution* 3(5):1356–1373.

Knight, M.; Parke, M. (1950)

A biological study of *Fucus vesiculosus* L. and *F. serratus* L. Journal of the Marine Biological Association of the UK 29:439–514.

Køie, M.; Kristiansen, A.; Weitemeyer, S. (2001)

Der große Kosmos Strandführer. Kosmos.

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		Reference	ces V		
	Luikart, G.; England, P. R. The power and promise of Nature Reviews Genetics 4	population genomics: from		typing	
	McMahon, C.R. & Hays, G				
	Thermal niche, large-scale vertebrate. Global Change Biology 12(ns of climate change for	a critically endangere	d marine
	Meehl, G.A.; Stocker, T.F. R.; Murphy, J.M.; Noda, A Global Climate Projections Climate Change 2007: the Assessment Report of the I	.; Raper, S.C.B.; Watterso physical science basis: con	n, I.G and Weaver, A.J. tribution of Working Gi	; Zhao, ZC. (2007) roup I to the Fourth	Knutti,
	Nicastro, K.R.; Zardi, G.I.; Shift happens: trailing edg lineage in the marine macro <i>BMC Biology</i> 11(6).	Teixeira, S.; Neiva, J.; Ser e contraction associated wi	rao, E.A.; Pearson, G.A	. (2013)	genetic
	Nolan, T.; Hands, R.E.; Bu Quantification of mRNA us	sing realtime RT-PCR			
	Nature Protocols 1(3)1559 Pannell, J. R.; Charleswort Effects of metapopulation	h, B. (2000)	enetic diversity		
	Philosophical Transactions		ndon B 355(1404):1851		UNIVERSITETET I NORDLAND
			< □ >	<個>< ()、 ()、 ()、 ()、 ()、 ()、 ()、 ()、 ()、 ()、	▶ 重目= ∽へで 6/26

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		Referenc	es VI		
	Pearson, G.A.; Lago-Leston Frayed at the edges: selecti diversity edge populations. Journal of Ecology 97(3):49	ve pressure and adaptive re	esponse to abiotic stre	essors are mismatched in	low
	Phillips, S.J.; Anderson, R.f Maximum entropy modeling Ecological Modelling 190(3	of species geographic dist	ributions.		
	Pounds, J. A.; Bustamante, E.; Masters, K.L.; Merino-V B.E. (2006) Widespread amphibian extir <i>Nature</i> 7073:161–167.	iteri, A.; Puschendorf, R.;	Ron, S.R.; Sanchez-A	zofeifa, G.A.; Still, C.J.;	
	Raybaud, V.; Beaugrand, G P.; Gevaert, F. (2013) Decline in Kelp in West Eur PLOS ONE 8:e66044.		, G.; Destombe, C.; Va	alero, M.; Davoult, D.; N	Aorin,
	Sturm, M.; Schimel, J.; Mic Romanovsky, V. (2005) Winter biological processes <i>Bioscience</i> 55(1):17–26.			on, G.E.; Fahnestock, J.	;
	Tyberghein, L.; Verbruggen, Bio-ORACLE: a global envi Global Ecology and Biogeog	ronmental dataset for mari	ne species distribution		UNIVERSITETET I NORDLAND

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		References	VII		

van Asch, M.; Salis, L.; Holleman, L.J.M.; van Lith, B.; Visser, M.E. (2013) Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Ecography 3:244–248.

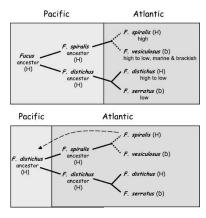
Viejo, R.M.; Martínez, B.; Arrontes, J.; Astudillo, C.; Hernández, L. (2011)

Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit.

Ecography 34(1):75-84.

Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.;

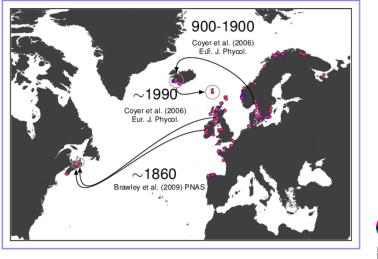
Hoegh-Guldberg, O.; Bairlein, F. (2002) Ecological responses to recent climate change. *Nature* 416(6879):389–395.



Wernberg, T.; Russell, B.D.; Thomsen, M.S.; Gurgel, F.D.; Bradshaw, C.J.A.; Poloczanska, E.S., Connell, S.D. (2011) Seaweed Communities in Retreat from Ocean Warming. *Current Biology* 21(21):1828–1832.

Appendix	References	Brown algae	Paper I	Paper II	Paper III

mtDNA based Phylogeny

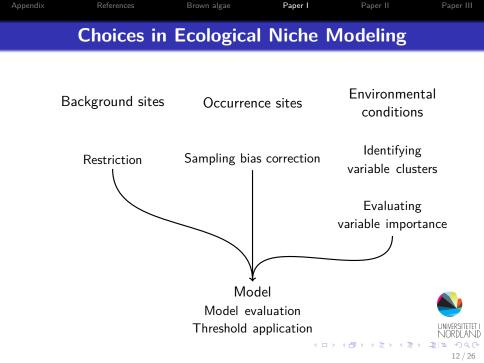


[Coyer et al., 2006; Mol. Phylogenet. Evol.]

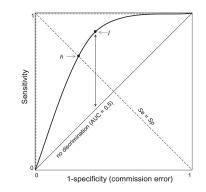
	ſ	Juman intr	aduction		
Appendix	References	Brown algae	Paper I	Paper II	Paper III

Human introduction

		Life cycles	of algae		
Appendix	References	Brown algae	Paper I	Paper II	Paper III



UNIVERSITETET I NORDLAND


11 / 26

三日 わえで

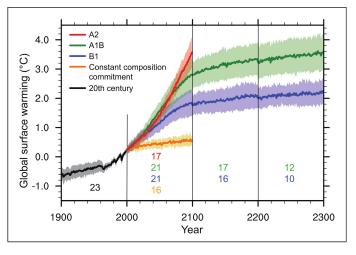
[Braune, 2008; Meeresalgen]

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		The AUC	value		

[Jimenez-Valverde, 2012; Global Ecol. Biogeogr.]

Sensitivity: Present, predicted as present 1-Specificity: Absence, predicted as present

Appendix References Brown algae **Paper I** Paper II Paper III


Importance of temperature for algal distribution

			Contribut	ion (%)	
Variable	Derivative	Unit	Fucus serratus	Fucus vesiculosus	Ascophyllum nodosum
SST	Minimum	°C	66	46.4	82.3
SST	Maximum	°C	24.7	42.8	
SST	Mean	°C	9.3		
SAT	Minimum	°C			7.3
Salinity	Mean	PSS			10.4
DA	Minimum	m^{-1}		10.8	

[Jueterbock et al., 2013; Ecol. Evol.]

Appendix	References	Brown algae	Paper I	Paper II	Paper III
	SRES	CO2 emis	sion scen	arios	

[Meehl et al., 2007; Climate Change 2007]

UNIVERSITETET I NORDLAND ヨョックへへ 15/26

► < ∃ >

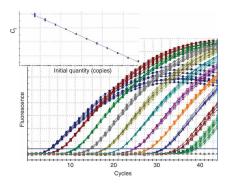
Appendix References Brown algae Paper I Paper II Paper III

Present-day habitat suitability and occurrence sites

Fucus serratus

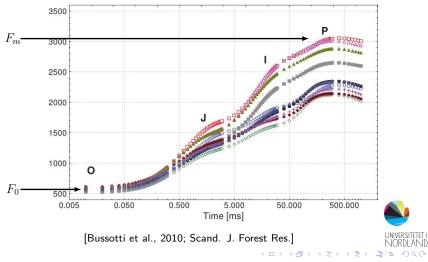
Fucus vesiculosus

Ascophyllum nodosum

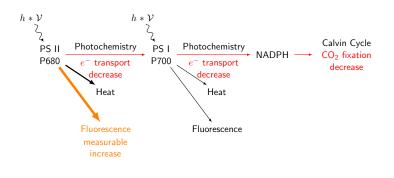


Appendix References Brown algae Paper I Paper II Paper III

Quantification of gene products

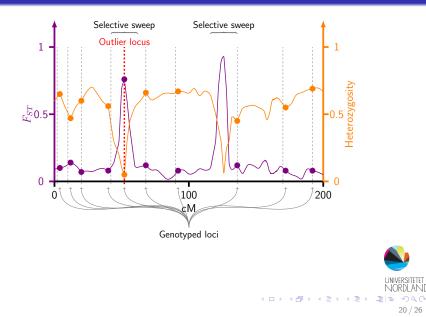


[Nolan et al., 2006; Nature Protocols]


 $\begin{array}{l} \textit{Efficiency} = 10^{-1/\textit{slope}} \\ \textit{quantity} = 10^{\frac{\textit{Ct}-\textit{b}}{\textit{slope}}} \end{array}$

Appendix	References	Brown algae	Paper I	Paper II	Paper III
		OJIP c	urve		

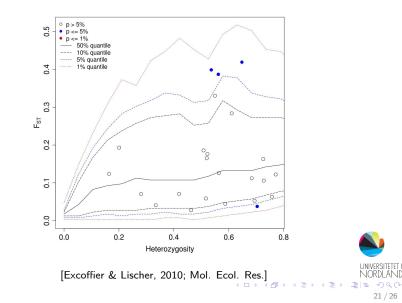
Appendix References Brown algae Paper I Paper II Paper II Paper III
Heat stress effect on photosynthesis



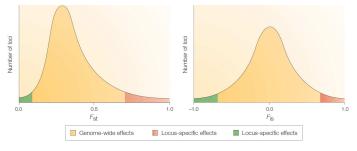
Paper I

Paper II

Paper III


Genome scan for outlier loci

RDI AND 20 / 26


Appendix References Brown algae Paper I Paper II Paper II Paper II

Arlequin - test for outlier loci

Appendix References Brown algae Paper I Paper II Paper II Paper III

Identification of outlier loci

[?]

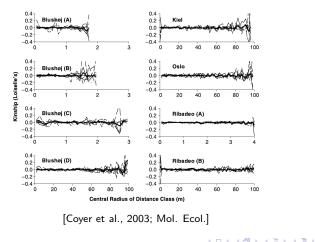
 Appendix
 References
 Brown algae
 Paper I
 Paper II
 Paper III

 Potential reasons for low
 N_e values

- Unequal sex ratios
- Variance in family size (individual gametic contribution)
- Fluctuations of population size (potential reason for the low N_e in Spain
- Reduced gene flow between populations
- Inbreeding

- The rate of genetic change due to genetic drift is proportional to $\frac{1}{2N_e}$
- The effectiveness of selection over genetic drift (drift dominates if selection $< \frac{1}{2N_e}$
- Nucleotide diversity 4Nu with u being the mutation rate
- In a closed population, N_e can indicate MLH. Gene flow uncouples N_e from genetic stochasticity

Appendix


Paper I

Paper II

Paper III

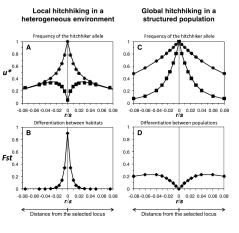
Significant *F*_{*IS*} values can not be explained by a small-scale family structure

Genetic correlations among individuals

Geographic distribution that creates correlations in population structure [Fourcade et al. 2013; Mol. Ecol., Bierne et al., 2013; Mol. Ecol.]

Background selection against deleterious mutations [Charlesworth et al., 1997; Genet. Res.]

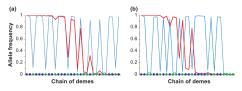
lix References Brown algae


Paper I

Paper II

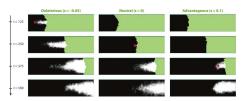
Paper III

Local adaptation - or? Alternative reasons for spatial outliers


Species-wide selective sweeps [Bierne, 2010; Evolution]

Appendix References Brown algae Paper I Paper II Paper II Paper III
Local adaptation - or?
Alternative reasons for spatial outliers

 Coupling of endogenous with exogenous gene flow barriers [Bierne et al., 2011; Mol. Ecol.]



red: endogenous, blue: exogenous alleles

 Stochastic effects at the wave edge of an expanding population [Excoffier et al., 2009; Annu. Rev. Ecol. Evol. Syst.]

イロト イヨト イヨト